Mikrobiol. Z. 2017; 79(1):46-58.
doi: https://doi.org/10.15407/microbiolj79.01.046

Endophytic Fungi of Sphagnum Bog Plants of Ukrainian Polissya

Kurchenko I.M.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Endophytic fungi exist asymptomatically within living tissues of host plants. The formation and coexistence of endophytic micromycete associations with mosses, ericoid, herbaceous and woody plants of Ukrainian Polissya sphagnum bogs were investigated along with the physiological properties of endophytes, plant pathogenic and soil isolates. The existence of endophytic micromycetes in plants of this ecosystem is a common phenomenon that integrates mosses, herbaceous and woody plants into the common trophic chain. The studied endophytic micromycetes belong to the Сlass 2 and 3 endophytes (NC-endophytes) in accordance with their spread in different plants and their organs, i.e. those that are present in all organs of bog plants and characterized by considerable diversity. Based on detection of endophytic species in different organs of certain plants and certain plant species, this classifcation is supplemented by new data on signifcant biodiversity of Class 2 endophytic micromycetes in plants.
It was established for the frst time that the endophytic way of existence of micromycetes is determined by ecological and physiological peculiarities of this group: fast extensional colonization of different species of bog plants, ability to transform the more toxic base T-2 toxin to its less toxic derivatives, a required presence of polygalacturonase activity and its higher level than for the isolates from other econiches.

Key words: endophytic micromycetes, species diversity, mutualism, growth characteristics, hydrolytic activity, trichothecene mycotoxins, vitamins of B group.

Full text (PDF, in English)

  1. Adejuwon AO, Oni AO, Ajayi AA, Olutiola PO. Cellulase activity in tomato fruits infected with Penicillium funiculosum Thom. Afr J Plant Sci. 2009; 3(5): 113–116.
  2. Albrectsen BR, Björkén L, Varad A, Hagner Å, Wedin M, Karlsson J, et al. Endophytic fungi in European aspen (Populus tremula) leaves – diversity, detection, and a suggested correlation with herbivory resistance. Fungal Diversity. 2010; 41(1): 17–28. https://doi.org/10.1007/s13225-009-0011-y
  3. Bacon CW, White JFJ. Physiological adaptations in the evolution of endophytism in the Clavicipitaceae. In: Microbial endophytes. New York, USA: Marcel Dekker Inc., 2000. p. 237–63.
  4. Cairney JWG, Burke RM. Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf et Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant and Soil. 1998; 205(1): 181–92. https://doi.org/10.1023/A:1004376731209
  5. Carroll G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbionts. Ecology. 1988; 69(1): 2–9. https://doi.org/10.2307/1943154
  6. Clay K. Clavicipitaceous fungal endophytes of grasses: their potential as biocontrol agents. Mycol Res. 1989; 92(1): 1–12. https://doi.org/10.1016/S0953-7562(89)80088-7
  7. Gao FK, Dai CC, Liu XZ. Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res. 2010; 4(13): 1346–51.
  8. Gazis R, Chaverri P. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecology. 2010; 3(3): 240–54. https://doi.org/10.1016/j.funeco.2009.12.001
  9. Geltser FYu. [The symbiosis with microorganisms is the basis of the life of plants]. Moscow: Publishing house of the MAA, 1990. Russian.
  10. Khan AL, Lee I-J. Endophytic Penicillium funiculosum LHL06 secretes gibberellins that  reprograms Glycine max L. growth during copper stress. BMC Plant Biology. 2013; 13:86. https://doi.org/10.1186/1471-2229-13-86
  11. Kozyrovska N. Endophyty.ua. Kyiv: LAT&K, 2011. Ukrainian.
  12. Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ. Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol. 2007; 174(3): 648–57. https://doi.org/10.1111/j.1469-8137.2007.02008.x
  13. Kumaresan V, Suryanarayanan TS. Endophyte assemblages in young, mature and senescent of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Diversity. 2002; 9: 81–91.
  14. Kurchenko IN. [Polygalacturonase activity of microscopic fungi of different trophic groups]. Mikrobiol Z. 2013; 75(2): 57–66. Russian.
  15. Kurchenko IM. [Distribution of endophytic mycobiota in sphagnum bog plants of Ukrainian Polissya]. Scientifc Reports of NULES of Ukraine. 2015; 6(55). nd.nubip.edu.ua/ 2015_6/2.pdf. Ukrainian.
  16. Kurchenko IM, Kharkevych OS, Yurieva OM, Pavlychenko AK, Suprun SM. [Ribofavin and nicotinic acid production by microscopic fungi of different trophic groups]. Vynograds’kyj Society of Microbiologists of Ukraine: Proceedings of the XIII Congress; 2013 Oct 1–6; Yalta, Ukraine. Yalta; 2013. p. 104.
  17. Kurchenko IN, Pavlychenko AK, Yurieva EM. [Growth characteristics of Fusarium poae (Peck) Wollenw. and Penicillium funiculosum Thom strains]. Mikrobiol Z. 2013; 75(5): 40–4. Russian.
  18. Kurchenko IN, Sokolova EV, Zhdanova NN, Orlov AA. [Some enzyme activity of endophytic fungi from vascular plants of Ukrainian Polessye sphagnum peat bogs]. Bulletin of the Odessa National University. Series Biology. 2005; 10(7): 255–61. Ukrainian.
  19. Kurchenko IM, Tsyganenko KS. [Comparative characteristic of trichothecene mycotoxin complex of Fusarium poae (Peck) Wollenw. the strains from different trophic groups]. Microbiol Biotechnol. 2013; 3(23): 40–9. Russian.
  20. Kurchenko IM, Yurieva OM, Voychuk SI. [Growth of micromycetes from different ecological niches on agar nutrient media]. Mikrobiol Z. 2015; 77(5): 37–46. Ukrainian.
  21. Kusari S, Hertweck C, Spiteller M. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chemistry & Biology. 2012; 19(7): 792–8. https://doi.org/10.1016/j.chembiol.2012.06.004
  22. Lumyong S, Lumyong P, McKenzie EH, Hyde KD. Enzymatic activity of endophytic fungi of six native seedling species from Doi Suthep-Pui National Park, Thailand. Can J Microbiol. 2002; 48(12): 1109–12. https://doi.org/10.1139/w02-112
  23. Malmer N. Mineral nutrients in vegetation and surface layers of Sphagnum dominated peat-forming systems. Advances in Bryology. Vol. 5: Biology of Sphagnum. Berlin-Stuttgart: J. Kramer, 1993. p. 223–48.
  24. Newton AC, Fitt BDL, Atkins SD, Walters DR, Daniell TJ. Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends Microbiol. 2010; 18(8): 365–73. https://doi.org/10.1016/j.tim.2010.06.002
  25. Odum Yu. [Fundamentals of ecology]: in 2 vol.; translation from English. Moscow: Mir; V. 1, 1986; V. 2, 1986. Russian.
  26. Orlov OO, Dolin VV. [Biogeochemistry of cesium-137 in the swamp forest ecosystems of Ukrainian Polissya]. Kyiv: Nauk. dumka, 2010. Ukrainian.
  27. Partida-Martínez LP, Heil M. The microbe-free plant: fact or artifact? Front Plant Sci. 2011; 100(2): 1–16. https://doi.org/10.3389/fpls.2011.00100
  28. Redecker D, Kodner R, Graham LE. Glomalean fungi from the Ordovician. Science. 2000; 289(5486): 1920–1. https://doi.org/10.1126/science.289.5486.1920
  29. Richter C, Dainty J. Ion behaviour in Sphagnum cell walls: IV. Selective cation binding by Sphagnum russowii cell walls. Can J Bot. 1990; 68(4): 773–81. https://doi.org/10.1139/b90-103
  30. Robl D, da Silva Delabona P, Mergel CM, Rojas JD, dos Santos Costa P, Chapaval Pimentel I, et al. The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnol. 2013;13:94. https://doi.org/10.1186/1472-6750-13-94
  31. Rodriguez RJ, White JF, Jr, Arnold AE, Redman RS. Fungal endophytes: Diversity and functional roles. New Phytol. 2009; 182(2): 314–30. https://doi.org/10.1111/j.1469-8137.2009.02773.x
  32. Rudenko AV, Koval EZ, Ryzhko PP, Zaplavskaya EA. [Onychomycosis. Diagnosis, etiology, epidemiology, treatment]. Kiev: [ChP VMB], 2007. Russian.
  33. Schulz B, Boyle C. The endophytic continuum. Mycol Res. 2005; 109(6): 661–86. https://doi.org/10.1017/S095375620500273X
  34. Schulz B, Römmert A-K, Dammann U, Aust H-J, Strack D. The endophyte-host interaction: a balanced antagonism. Mycol Res. 1999; 103(10): 1275–83. https://doi.org/10.1017/S0953756299008540
  35. Sinclair JB. Latent infection of soybean plants and seeds by fungi. Plant Dis. 1991; 75(3): 220–4. https://doi.org/10.1094/PD-75-0220
  36. Slippers B, Wingfeld MJ. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews. 2007; 21(2–3): 90–106. https://doi.org/10.1016/j.fbr.2007.06.002
  37. Smirnov VV, Zaichenko AM, Rubezhniak IG. [Mycotoxins: fundamental and applied aspects].Modern Problems of Toxicology. 2000; (1): 5–12.
  38. Wilson D. Endophyte – the evolution of a term, and clarifcation of its use and defnition. Oikos. 1995; 73(2): 274–6. https://doi.org/10.2307/3545919
  39. Zhdanova NN, Zakharchenko VA, Vasilevskaya AI, Shkolny AT, Kuchma ND, Artyshkova LV, et al. [Mycobiota of Ukrainian Polissya: the effects of the Chernobyl disaster]. Kyiv: Naukova dumka, 2013. Russian.
  40. Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfff S, Biedenkopf D, et al. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog. 2011; 7(10): e1002290. https://doi.org/10.1371/journal.ppat.1002290