Mikrobiol. Z. 2016; 78(6):37-49.
doi: https://doi.org/10.15407/microbiolj78.06.037

Structure, Function and Biological Activity of Lipopolysaccharide Lipid A

Varbanets L.D.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Bacterial lipopolysaccharides (LPS) are the major outer surface membrane components present in almost all gram-negative bacteria. It consists of poly- or oligosaccharide region that is anchored in the outer membrane by a specific lipid moiety termed lipid A. Recent studies have shown that it is only the lipid A of LPS that has the function of endotoxin. Despite its general structural conservation, lipid A also has considerable structural microheterogeneity which can vary depending on diverse factors including bacterial adaptation to changing environment and external stimuli, incomplete biosynthesis, and breakdown products and/or chemical modifications. Therefore it is more appropriate to consider lipid A as a family of structurally related molecular species with different acylation and phosphorylation patterns rather than as an individual, homogeneous molecule. The studies of structure-function relationship of lipid A, which has the typical structure of E. coli type lipid A backbone, demonstrated that activities differed depending on: 1) the number of phosphoryl and acyl residues, 2) the substituted site of phosphoryl and acyl residues, 3) the chain length of acyl residues, 4) lipid A conformation. Current investigations showed that lipid A and also the integral outer membrane proteins responsible for the final stage of LPS transport are the pinpoints in solving the problem of bacterial drug resistance. The identification of inhibitors that specifically target LPS transport in vitro and more importantly in vivo have a significant potential for the development of novel drugs against multi-drug resistant pathogenic bacteria.

Key words: lipid A, lipopolysaccharide, structure, biological activity.

Full text (PDF, in English)

  1. Anwar MA, Choi S. Gram-negative marine bacteria: structural features of lipopolysaccharides and their relevance for economically important diseases. Marine Drugs. 2014; 12: 2485–2514. https://doi.org/10.3390/md12052485
  2. De Castro C, Molinaro A, Lanzetta R, Silipo A, Parrilli M. Lipopolysaccharide structures from Agrobacterium and Rhizobiaceae species. Carbohydr Res. 2008; 343: 1924–33. https://doi.org/10.1016/j.carres.2008.01.036
  3. Diacovich L, Gorvel JP. Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol. 2010; 8: 117–28. https://doi.org/10.1038/nrmicro2295
  4. Dong H, Xiang Q, Gu Y, Wang Z, Paterson NJ, Stansfeld PJ, et al. Structural basis for outer membrane lipopolysaccharide insertion. Nature. 2014; 511: 52–56. https://doi.org/10.1038/nature13464
  5. Hamad M, Di Lorenzo F, Molinaro A, Valvano M. Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia. Mol Microbiol. 2012; 85(5): 962–74. https://doi.org/10.1111/j.1365-2958.2012.08154.x
  6. Holst O, Molinaro A. Core oligosaccharide and lipid A components of lipopolysaccharides. In: Moran A, Brennan P, Holst O, von Itszstein M, eds. Microbial glycobiology: structures relevance and applications. Elsevier, San Diego; 2009. P. 29–59.
  7. Imoto M, Shiba T, Iwashita T, Rietschel ET, Wollenweber H-W, Galanos C, et al. Chemical structure of Escherichia coli lipid A: linkage site of acyl groups in the disaccharide backbone. Tentahedron Letts. 1983; 24: 4017–20. https://doi.org/10.1016/S0040-4039(00)88251-9
  8. Imoto M, Yoshimura H, Sakaguchi N, Kusumoto S, Shiba T. Total synthesis of Escherichia coli lipid A. Tetrahedron Letts. 1985; 26: 1545–48. https://doi.org/10.1016/S0040-4039(00)98548-4
  9. Kabanov DS, Prokhorenko IR. Structural analysis of lipopolysaccharides from gramnegative bacteria. Biokhimiya (Moscow). 2010; 75 4): 383–404.
  10. Kawasaki K, Teramoto M, Tatsui R, Amamoto S. Lipid A 3' –O-deacylation by Salmonella outer membrane enzyme Lpx R modulates the ability of lipid A to stimulate Toll-like receptor 4. Biochem Biophys Res Commun. 2012; 428(3): 343–47. https://doi.org/10.1016/j.bbrc.2012.10.054
  11. Kilar A, Dornyei A, Kocsis B. Structural characterization of bacterial lipopolysaccharides with mass specrometry and on- and off-line separation techniques. Mass Spectrom Rev. 2013; 32: 90–117. https://doi.org/10.1002/mas.21352
  12. Krasikova IN, Kapustina NV, Isakov VV, Dmitrenok AS, Dmitrenok PS, Gorshkova NM, et al. Detailed structure of lipid A isolated from lipopolysaccharide from the marine proteobacterium Marinomonas vaga ATCC 27119. Eur J Biochem. 2004; 271: 2895–2904. https://doi.org/10.1111/j.1432-1033.2004.04212.x
  13. Kulshin VA, Zahringer U, Lindner B, Frasch CE, Tsai CM, Dmitriev BA, et al. Structural characterization of the lipid A component of pathogenic Neisseria meningitides. J Bacteriol. 1992; 174: 1793–1800. https://doi.org/10.1128/jb.174.6.1793-1800.1992
  14. Le Brun A, Clifton LA, Halbert CE, Lin B, Meron M, Holden PJ, Lakey JH, et al. Structural characterization of a model gram-negative bacterial surface using lipopolysaccharides from rough strains of Escherichia coli. Biomacromolecules. 2013; 14(6): 2014–2022. https://doi.org/10.1021/bm400356m
  15. Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F, Conlon JE, et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol. 2006; 7: 1066–73. https://doi.org/10.1038/ni1386
  16. Moran P. Lipopolysaccharide in bacterial chronic infection: insights from Helicobacter pylori lipopolysaccharide and lipid A. Int J Med Microbiol. 2007; 297: 307–19. https://doi.org/10.1016/j.ijmm.2007.03.008
  17. Okan NA, Kasper DL. The atypical lipopolysaccharide of Francisella. Carbohydr Res. 2013; 378: 79–83. https://doi.org/10.1016/j.carres.2013.06.015
  18. Phillips NJ, Schilling B, McLendon MK, Apicella MA, Gibson BW. Novel modification of lipid A of Francisella tularensis. Infect Immun. 2004; 72: 5340–48. https://doi.org/10.1128/IAI.72.9.5340-5348.2004
  19. Plotz BM, Lindner B, Stetter KO, Holst O. Characterization of a novel lipid A containing D-galacturonic acid that replaces phosphate residues. The structure of the lipid A of the lipopolysaccharide from the Biol Chem. 2000; 275: 11222–28.
  20. Qiong Liu, Yanyan Li, Xinxin Zhao, Xue Yang, Qing Liu, Qingke Kong. Construction of Escherichia coli mutant with decreased endotoxic activity by modifying lipid A structure. Marine drugs. 2015; 13(6): 3388–3406 https://doi.org/10.3390/md13063388
  21. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002; 71: 635–700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
  22. Raetz CH, Reynolds CM, Trent MS, Bishop RE. Lipid A modification systems in Gramnegative bacteria. Annu Rev Biochem. 2007; 76: 295–329. https://doi.org/10.1146/annurev.biochem.76.010307.145803
  23. Rietschel ET, Westphal O. Endotoxin: historical perspectives. In: Brade H, Opal SM, Vogel SN, Morrison DC, eds. Endotoxin in health and disease. Marcel Dekker, New York; 1999. P. 1–30.
  24. Rubin E, Herrera C, Crofts A, Trent M. PmrD is required for modifications to Escherichia coli endotoxin that promote antimicrobial resistance. Antimicrobial agents and chemotherapy. 2015; 59(4): 2051–61. https://doi.org/10.1128/AAC.05052-14
  25. Ruiz N, Chng SS, Hiniker A, Kahne D, Silhavy TJ. Nonconsecutive disulfide bond formation in an essential integral outer membrane protein. Proc Natl Acad Sci USA. 2010; 107: 12245–50. https://doi.org/10.1073/pnas.1007319107
  26. Salimath PV, Weckesser J, StrittmatterW, Mayer H. Structural studies on the non-toxic lipid A from Rhodopseudomonas sphaeroides ATCC 17023. Eur J Biochem. 1983; 136: 195–200. https://doi.org/10.1111/j.1432-1033.1983.tb07726.x
  27. Seydel U, Schromm A, Blunck R, Brandenburg K. Chemical structure, molecular conformation and bioactivity of endotoxins. Chem Immunol. 2000; 74: 5–24. https://doi.org/10.1159/000058754
  28. Sherman DJ, Okuda S, Denny W.A, Kahne D. Validation of inhibitors of an ABC transporter required to transport lipopolysaccharide to the cell surface in Escherichia coli. Bioorg Med Chem. 2013; 21: 4846–51. https://doi.org/10.1016/j.bmc.2013.04.020
  29. Schromm AB, Brandenburg K, Lopnow H, Moran AP, Koch MN, Rietschel ET, Seydel U. Biological activity of lipopolysaccharides are determined by the shape of their lipid A portion. Eur J Biochem. 2000; 267(7): 2008–13. https://doi.org/10.1046/j.1432-1327.2000.01204.x
  30. Silipo A, De Castro C, Lanzetta R, Parrilli M, Molinaro A. Lipopolysaccharides. In: Konig H, Claus H, Varma A, eds. Prokaryotic cell wall compounds – structure and biochemistry. Springer, Heidelberg, 2010. P. 133–154. https://doi.org/10.1007/978-3-642-05062-6_4
  31. Silipo A., Molinaro A. Lipid A Structure. In: YA Knirel, MA Valvano, eds. Bacterial lipopolysaccharides. Structure, chemical synthesis, biogenesis and interactions with host cells. Springer Wien: New York, 2011. P. 1–20.
  32. Srinivas N, Jetter, P, Ueberbacher B.J., Werneburg, M., Zerbe, K., Steinmann J, et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science. 2010; 327: 1010–13. https://doi.org/10.1126/science.1182749
  33. Takayama K, Qureshi N, Mascagni P. Complete structure of lipid A obtained from the lipopolysaccharide of the heptoseless of Salmonella typhimurium. J Biol Chem. 1983; 258: 12801–03.
  34. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010; 140: 805–20. https://doi.org/10.1016/j.cell.2010.01.022
  35. Trent MS, Ribeiro AA, Lin S, Cotter RJ, Raetz CR. An inner membrane enzyme in Salmonella and Escherichia coli that transfer 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymixyn-resistant mutants and role of a novel lipid-linked donor. J Biol Chem. 2001; 276(46): 43122–31. https://doi.org/10.1074/jbc.M106961200
  36. Tsukioka D, Nishizawa T, Miyase T, Achiwa K, Suda T, Soma GI, et al. Structural characterization of lipid A obtained from Pantoea agglomerans lipopolysaccharide. FEMS Microbiology Letters. 1997; 149: 239–44. https://doi.org/10.1111/j.1574-6968.1997.tb10335.x
  37. Ulmer A, Heine H, Feist W, Brade E, Schade U, Rietschel ET et al. Biological activity of lipid A partial structures. In: Bacterial Endotoxins: Basic Science to Anti-Sepsis Strategies. Eds. Levin J, Deventer S, Poll T, Sturk A. WILEY-LISS Inc; 1994. P. 71–83.
  38. van Mourik A, Steeghs L, van Laar J, Meiring HD, Hamstra HJ, van Putten JP, et al. Altered linkage of hydroxyacyl chains in lipid A of Campylobacter jejuni reducesTLR4 activation and antimicrobial resistance. J Biol Chem. 2010; 285: 15828–36. https://doi.org/10.1074/jbc.M110.102061
  39. Wang Z, Li J, Altman E. Structural characterization of the lipid A region of Aeromonas salmonicida subsp. salmonicida lipopolysaccharide. Carbohydr Res. 2006; 341: 2816–25. https://doi.org/10.1016/j.carres.2006.09.020
  40. Westphal O, Luderitz O. Chemische erforschung von lipopolysaccharideen Gramnegativer bakterien. Angew Chem. 1954; 66: 407–417. https://doi.org/10.1002/ange.19540661312
  41. Whitfield C, Trent MS. Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem. 2014; 83: 99–128. https://doi.org/10.1146/annurev-biochem-060713-035600
  42. Wollenweber HW, Schlecht S, Luderitz O, Rietschel ET. Fatty acid in lipopolysaccharides of Salmonella species grown at low temperature. Identification and position. Eur J Biochem. 1983; 130: 167–71. https://doi.org/10.1111/j.1432-1033.1983.tb07132.x
  43. Yinghong G, Phillip JS, Yi Z, Dong H, Wang W, Dong C. Lipopolysaccharide is Inserted into the Outer Membrane through an intramembrane hole, a lumen gate, and the lateral opening of LptD. Structure. 2015; 23: 496–504. https://doi.org/10.1016/j.str.2015.01.001
  44. Zahringer U, Lindner B, Rietschel ET. Chemical structure of lipid A: Recent advances in structural analysis of biologically active molecules In: Endotoxin in Health disease. Eds. Brade H., Opal S., Vogel S., Morrison D. Marcel Dekker, Inc. New York. Basil. 1999. P. 93–114.
  45. Zarrouk H, Karibian D, Bodie S, Perry MB, Richards JC, Caroff M. Structural characterization of the lipids A of three Bordetella bronchiseptica strains: variability of fatty acid substitution. J Bacteriol. 1997; 179: 3756–60. https://doi.org/10.1128/jb.179.11.3756-3760.1997
  46. Zhang G, Meredith TC, Kahne D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr Opin Microbiol. 2013; 16: 779–85. https://doi.org/10.1016/j.mib.2013.09.007