Mikrobiol. Z. 2016; 78(5):12-20. Ukrainian.
doi: https://doi.org/10.15407/microbiolj78.05.012

Biological Properties of Nocardia vaccinii IMV B-7405 Surfactants Synthesized
on Byproduct of Biodiesel Production

Pirog T.P.1,2, Nikituk L.V.1, Iutynska G.O.2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim. Comparison of antimicrobial and anti-adhesive activity of Nocardia vaccinii ІMV B-7405 surfactants synthesized on purified and technical glycerol (byproduct of biodiesel production). Methods. Surfactants were extracted from supernatant of cultural liquid by mixture of chloroform and methanol (2 : 1). Antimicrobial against bacteria and yeast properties of the surfactant was determined by index of the minimum inhibitory concentration (MIC). The number of attached cells was determined spectrophotometrically. Results. The dependence of surfactant antimicrobial and anti-aghesive activity on the degree of glycerol purification (purified, technical), as well as the duration of N. vaccinii IMV B-7405 cultivation on these substrates was established. MIC against studied test cultures surfactants, synthesized on technical glycerol during 5 days, was 15 – 121 μg/ml, that lower than MIC of surfactant obtained on purified substrate (22.5 − 180 μg/ml). Increasing duration of N. vaccinii ІMV B-7405 cultivation accompanied by rise the MIC against some test cultures surfactants synthesized on both technical and purified glycerol. Adhesion of the bacteria Escherichia coli ІEM-1, Bacillus subtilis BT-2 (vegetative cells and spores) and the yeast Candida albicans Д-6 on abiotic surfaces treated with surfactants synthesized on technical glycerol for both 5 and 7 days, was an average of 11 − 12 % less than after materials treatment with surfactants obtained on the purified substrate. Conclusions. Increasing activity of NADP+-dependent glutamate dehydrogenase − key enzyme of aminolipids biosynthesis (effective antimicrobial and anti-adhesion agents) in the presence of K+ and Na+ may indicate the possibility of biosynthesis intensification of these components of surfacrants complex under N. vaccinii ІMV B-7405 cultivation on technical glycerol, which is characterized by a high content of sodium and potassium cations. Replacing refined glycerol on byproduct of biodiesel production will not only reduce the cost of N. vaccinii ІMV B-7405 surfactant biosynthesis, but also to obtain the final product with high antiadhesive and antimicrobial activity.

Key words: Nocardia vaccinii ІMV B-7405, surfactants, antimicrobial and anti-adhesive properties, the duration of cultivation, purified and technical glycerol.

Full text (PDF, in Ukrainian)

  1. Pirog T., Sofilkanych A., Konon A., Shevchuk T., Ivanov S. Intensification of surfactants' synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii K-8 on fried oil and glycerol containing medium. Food Bioprod. Proces. 2013; 91(2): 149−157. https://doi.org/10.1016/j.fbp.2013.01.001
  2. Pirog T.P., Konon A.D., Beregovaya K.A., Shulyakova M.A. Antiadhesive properties of the surfactants of Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017, and Nocardia vaccinii IMB B-7405. Microbiology. 2014; 83(6): 732–739. https://doi.org/10.1134/S0026261714060150
  3. Pirog T., Shulyakova M., Sofilkanych A., Shevchuk. T., Maschenko O. Biosurfactant synthesis by Rhodococcus erytropolis IMV Ac -5017, Acinetibacter calcoaceticus IMV B-7241, Nocardia vaccinii IMV B-7405 on byproduct of biodiesel production. Food Bioprod. Proces. 2015; 93(1): 11−18. https://doi.org/10.1016/j.fbp.2013.09.003
  4. Pirog T.P., Beregova K.A., Savenko I.V., Shevchuk T.A., Iutynska G.O. Antimicrobial action of Nocardia vaccinii IMV B-7405 surfactants. Microbiol. Z. 2015; 78(6): 2−10. https://doi.org/10.15407/microbiolj77.06.002
  5. Pirog T.P., Sofilkanych A.P., Grytsenko N.A. Elimination of oil pollution in the presence of surfactants produced by Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017 and Nocardia vaccinii IMV B-7405. Biotechnology. Theory and Practice. 2015; 2:42−50.
  6. Chatzifragkou A., Papanikolaou S. Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes. Appl. Microbiol. Biotechnol. 2012; 95(1):13−27. https://doi.org/10.1007/s00253-012-4111-3
  7. Samul D., Leja K., Grajek W. Impurities of crude glycerol and their effect on metabolite production. Ann. Microbiol. 2014; 64(3): 891−898. https://doi.org/10.1007/s13213-013-0767-x
  8. Pirog T.P., Grytsenko N.A, Sofilkanych A.P., Savenko I.V. Technologies of synthesis of organic substances by microorganisms using waste biodiesel production. Biotechnologia acta. 2015; 8(3): 9−27.
  9. Pirog T.P., Savenko I.V., Shevchuk T.A., Krutous N.V., Iutynska G.O. Antimicrobial properties surfactants synthesized under different cultivation conditions of Acinetobacter calcoaceticus IMV B-7241. Microbiol. Z. 2016; 79(3): 2−12. https://doi.org/10.15407/microbiolj78.03.002
  10. Pirog T.P., Nikituk L.V., Tymoshuk K.V., Shevchuk T.A., Iutynska G.O. Biological properties of Nocardia vaccinii IMV B-7405 surfactants synthesized on fried sunflower oil. Microbiol. Z. 2016; 79(2): 2−12. https://doi.org/10.15407/microbiolj77.02.002
  11. Shiio I., Ozaki H. Regulation of nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Brevibacterium flavum, a glutamate-producing bacterium. J. Biochem. 1970; 68(5): 633−647. https://doi.org/10.1093/oxfordjournals.jbchem.a129397
  12. Yazdani S., Gonzalez R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 2007; 18(3): 213–219. https://doi.org/10.1016/j.copbio.2007.05.002
  13. Yang F., Hanna M.A., Sun R. Value-added uses for crude glycerol – a byproduct of biodiesel production. Biotechnol. Biofuels. 2012. https://doi.org/10.1186/1754-6834-5-13
  14. Ashby R.D., Nu-ez A., Solaiman D.K.Y., Foglia T.A. Sophorolipid biosynthesis from a biodiesel co-product stream. JAOCS. 2005; 82(9): 625−630. https://doi.org/10.1007/s11746-005-1120-3
  15. Sleiman J.N., Kohlhoff S.A., Roblin P.M., Wallner S., Gross R., Hammerschlag M.R., Zenilman M.E., Bluth M.H. Sophorolipids as antibacterial agents. Ann. Clin. Lab. Sci. 2009; 39(1): 60−63.
  16. Pirog T.P., Shevchuk T.A., Beregova K.A., Kudrya N.V. Peculiarities of glucose and glycerol metabolism in Nocardia vaccinii IMVB-7405. Ukr. Biochem. J. 2015; 87(2): 66-75. https://doi.org/10.15407/ubj87.02.066
  17. Bhuiya M.W., Sakuraba H., Kujo C., Nunoura-Kominato N., Kawarabayasi Y., Kikuchi H., Ohshima T. Glutamate dehydrogenase from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1: enzymatic characterization, identification of the encoding gene, and phylogenetic implications. Extremophiles. 2000; 4(6): 333−341. https://doi.org/10.1007/s007920070002