Mikrobiol. Z. 2016; 78(5):2-11.
doi: https://doi.org/10.15407/microbiolj78.05.002

Complex Identification of Red Yeast Isolate from Gastrointestinal Tract
of Hucul Long-Liver (Carpathians, Ukraine)

Fomina M.A.1, Polishchuk L.V.1, Tkachenko K.S.1 Hong J.W.2, Zelena L.B.1, Ianieva O.D.1, Pidgorskyi V.S.1

1Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

2National Marine Biodiversity Institute of Korea
Seocheon, 33662, South Korea

The red yeasts are currently widely discussed and controversial group of yeasts because of the growing number of reports of their ability to become opportunistic pathogens of plants, animals and humans. The aim of this work was complex identifcation of the red yeast culture isolated from gastrointestinal tract of healthy Hucul long-liver from the Carpathians highland region of Ukraine. Torularhodin was found to be a major component within yeast culture carotenoids complex. According to conventional biochemical and morphological approaches as well as to molecular biological investigation of internal transcribed spacer region (ITS) of ribosomal operon it was concluded that isolate belonged to species Rhodotorula mucilaginosa.

Key words: red yeasts, identifcation, carotenoids, ITS, phylogram.

Full text (PDF, in English)

  1. Babeva I.P., Golubev V.I. Metody vydeleniya i identifikatsii drozhzhey. Moscow: Pishchevaya promyshlennost, 1979.
  2. Kvasnikov E.I., Nagornaya S.S., Kovalenko N.K., Shishlevskaya T.N. Drozhzhevaya flora kishechnogo trakta dolgozhiteley Abkhazii. Mikrobiol Z. 1985; 47(4):22–26.
  3. Suslova O.S., Holembiyevska S.L., Matselyukh B.P., Tashyrev O.B. Pihmenty drizhdzhiv, vydilenykh z pechery Musharova yama. Faktory eksperymentalnoi evolyutsii orhanizmiv, Zbirnyk naukovykh prats. 2014; 14:26–29.
  4. Barnett J.A., Payne R.W., Yarrow D. Yeasts: Characteristics and Identification. Cambridge University Press, Cambridge, 2000.
  5. Boby V.U., Balakrishna A.N., Bagyaraj D.J. Effect of combined inoculation of an am fungus with soil yeasts on growth and nutrition of cowpea in sterilized soil. World Journal of Agricultural Sciences. 2007; 3:423–429.
  6. Britton G. General carotenoid methods. Steroids and Isoprenoids. Meth. Enzymol Part B. Ed. J.H. Law, H.C. Rilling. Orlando, San Diego etc.: Academ. Press. 1985. Vol. 111. P. 113–149.
  7. Buzzini P., Innocenti M., Turchetti B., Libkind D., Van Broock M., Mulinacci N. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can J Microbiol. 2007; 53(8):1024–1031. https://doi.org/10.1139/W07-068
  8. Cherilyn D. Garner, Jennifer K. Starr, Patrick L. McDonough, Craig Altier. Molecular Identification of Veterinary Yeast Isolates by Use of Sequence-Based Analysis of the D1/D2 Region of the Large Ribosomal Subunit. Journal Of Clinical Microbiology. 2010; 6(6):2140–2146. https://doi.org/10.1128/JCM.02306-09
  9. Golubev W.I. New species of basidiomycetous yeasts, Rhodotorula creatinovora and R. yakutica, isolated from permafrost soils of Eastern-Siberian Arctic. Mykologiya i Phytopathologiya. 1999; 32:8–13.
  10. Goodwin T.W. The Biochemistry of the carotenoids. London: Acad. Press, 1990. P. 36–52.
  11. Las Heras-Vazquez F.J., Mingorance-Cazorla L., Clemente-Jimenez J.M., Vico F.R. Identification of yeast species from orange fruit and juice by RLFP and sequence analysis of the 5.8S rRNA gene and the two international transcribed spacers. FEMS Yeast Research. 2003; 3(1):312–326. https://doi.org/10.1111/j.1567-1364.2003.tb00132.x
  12. Hong J.W., Fomina M., Gadd G.M. F-RISA fungal clones as potential bioindicators of organic and metal contamination in soil. J Аppl microbiol. 2010; 109(2):415–430.
  13. Irinyi L., Serena C., Garcia-Hermoso D. International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database— the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol 2015; 53(4):313–337. https://doi.org/10.1093/mmy/myv008
  14. Iwen P.C., Hinrichs S.H. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med Mycol. 2002; 40(87):109–116. https://doi.org/10.1080/mmy.
  15. Komagata K. Value of chemosystematic data for predicting anamorph-teleomorph relationships between the genera Rhodotorula and Rhodosporidium. FEMS Microbiology Letters. 1992; 100(1–3):503–508. https://doi.org/10.1111/j.1574-6968.1992.tb14084.x
  16. Kumar S., Kushwaha H., Bachhawat A.K., Raghava G.P.S., Ganesan K. Genome Sequence of the Oleaginous Red Yeast Rhodosporidium toruloides MTCC 457. Eukariotic Cell. 2012; 11(8):1083–1084. https://doi.org/10.1128/EC.00156-12
  17. Kurtzman C.P., Fell J.W., Boekhout T. The Yeasts: A Taxonomic Study. Elsevier Science B.V., 2011.
  18. Nunes J.M., Bizerra F.C., Ferreira R.C., Colombo A.L. Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates. Antimicrob Agents Chemother. 2013; 57(1):382–389. https://doi.org/10.1128/AAC.01647-12
  19. Sampedro I., Aranda E., Scervino J.M., Fracchia S., García-Romera I., et al. Improvement by soil yeasts of arbuscular mycorrhizal symbiosis of soybean (Glycine max) colonized by Glomus mosseae. Mycorrhiza. 2002; 14:229–234. https://doi.org/10.1007/s00572-003-0285-y
  20. Tournas V.H., Katsoudas E., Miracco E.J. Moulds, yeasts and aerobic plate counts in ginseng supplements. Int J Food Microbiol. 2006; 108:178–181. https://doi.org/10.1016/j.ijfoodmicro.2005.11.009
  21. Wach A., Pick H., Philippsen P. Procedures for isolating yeast DNA for different purposes. In Johnston JR, ed., Molecular genetics of yeast: a practical approach. Oxford University Press, Oxford, United Kingdom, 1994. P. 10–11.
  22. Wirth F., Goldani L.Z. Epidemiology of Rhodotorula: An Emerging Pathogen. Interdisciplinary Perspectives on Infectious Diseases, 2012. P. 1–7. https://doi.org/10.1155/2012/465717