Mikrobiol. Z. 2016; 78(4):34-47. Ukrainian.
doi: https://doi.org/10.15407/microbiolj78.04.034

Antinematicidal Activity of Metabolites Produced by Soil Streptomycete

Biliavska L.A., Galagan T.O., Iutynska G.A.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Goal. To study in vitro the antinematicide activity of soil streptomycetes metabolite and bioformulations based on them against root-knot, cyst and leaf nematodes of species. Methods. Action of streptomycetes metabolites and their bioformulations were determined in vitro against larvae at two age of root-knot nematode Meloidogyne incognita (Kofoid & White, 1919) Chitwood 1949 and sugar beet cyst nematode Heterodera schachtii A. Schmidt 1871, and leaf nematodes of Aphlenchoides genus by cultivation them in solutions of biomass ethanol extracts separate individual components metabolites and bioformulations during 24 hours. Nematicide and nematistatic effects of the substances were evaluated by the change in the motility activity of the nematodes. Results. Soil streptomycetes Streptomyces violaceus IMV Ac-5027, S. avermitilis IMV Ac-5015 and metabolite bioformulations based on them (Violar, Avercom and Avercom-nova, respectively) showed significant nematicidal activity against plant pathogenic nematodes M. incognita and H. schachtii. The biomass extracts of S. avermitilis IMV Ac-5015 and S. violaceus IMV Ac-5027 caused 100 % death of nematodes, and S. netropsis IMV Ac-5025 caused only 75 % mortality during 24 hours of action. Using an antibiotic complex from S. violaceus IMV Ac-5027 was divided on six fractions that were different from the avermectin complex. Purified fractions of individual antibiotic complex of S. violaceus IMV Ac-5027 have a negative impact against the root-knot nematode M. incognita. The highest nematicidal activity showed fractions #4 and #5 since their efficiency was over 90 % after a 0.5 hours of action. Nematicidal efficiency of fractions ## 1, 2, 3 and 6 remained between 72.6 – 86.2 % during 24 hours of action. Fractions 4 and 5 showed high nematicidal effectiveness against leaf nematodes of Aphelenchoides genus where 90–95 % level of helminthes death was observed after 4 hours of action. Among created complex metabolite bioformulations Avercom-nova was the most effective which caused 100 % mortality of nematodes M. incognita and H. schachtii after 24 hours of action. Bioformulation Violar caused 96.6–96.8 and 95.2–97.0 % of death of nematodes M. incognita and H. schachtii, after 24 hours of action. Phytovit based on S. netropsis IMV Ac-5025 showed low nematicide activity against of nematodes, which did not exceed 15.2 – 18.4 % of their death after 24 hour of action. Bioformulations based on streptomycetes metabolites did not inferior to chemical insecticide Konfidor Maxi, which caused the death of 93.3 – 94.6 % nematodes at doses recommended by the manufacturer. Conclusion. Soil streptomycetes S. violaceus IMV Ac-5027 and S. avermitilis IMV Ac-5015 are promising producers for creation of bioformulations with nematicidal activity against plant-parasitic nematode of M. incognita and H. schachtii.

Key words: soil streptomycete, metabolites, bioformulations, phytonematodes, nematicide activity.

Full text (PDF, in Ukrainian)

  1. Collange B., Navarrete M., Peyre G., Mateille N. Tchamitchian M. Root-knot nematode (Meloidogyne) management in vegetable crop production: The challenge of an agronomic system analysis. Crop protection. 2011; 30: 1251–1262. https://doi.org/10.1016/j.cropro.2011.04.016
  2. Ford C. Market Research Head at Marketsandarkets. 2014.
  3. Chubachi K., Furukawa M., Fukuda S., Matsumura S., Yanagisawa T., Itagawa H., Nakagawa A. Suppressive effects of antinematodal Streptomyces spp. on root-knot nematodes of cucumbers caused by Meloidogyne incognita. Biocontrol science. 2002; 7: 25–29. https://doi.org/10.4265/bio.7.25
  4. Biliavska L.O., Pidlypska V.A., Kozyritska V.Y., Iutynska G.A. Biosynthetic activity of soil streptomycetes – antagonists of plan-parasitic nematodes and phytopathogens. Proceedings of the 4th European Conference on Biology and Medical Sciences. East West, Association for Advanced Studies and Higher Education GmbH. Austria, Vienna. 2015: 10–17.
  5. Hussey R.S., Janssen G.J.W. Root-knot nematodes Meloidogyne species. In: Plant Resistance to Parasitic Nematodes. Eds.: J.L. Starr, R. Cook and J. Bridge. United Kingdom: CAB International, 2002: 43–70.
  6. Stevens M., May M.J. Pests, diseases and weeds review 2009. British Sugar Beet Review. 2010; 78(1): 7–10.
  7. New plant growth regulators: basic research and technologies of application. Ed. S.P. Ponomarenko, G.O. Iutynska. Kyiv: Nichlava, 2011.
  8. Warwick S.I. Brassicaceae in Agriculture. Chapter 2. In: Genetics and Genomics of the Brassicaceae, Plant Genetics and Genomics: Crops and Models 9. Eds. R. Schmidt, I. Bancroft. XII. Science+Business Media, LLC, 2011. P. 33–65.
  9. Krechel A., Faupel A., Hallmann J., Ulrich A., Berg G. Potato-associated bacteria and their antagonistic potential toward plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid&White) Chitwood. Canadian Journal of Microboilogy. 2002; 48: 772–786. https://doi.org/10.1139/w02-071
  10. Genilloud O., Ganzalez I., Salazar O., Martin J., Tormo J.R., Vicente F. Current approaches to exploit actinomycetes as a source of novel natural products. J. Ind. Microbiol. Biotechnol. 2011; 38(3): 375–389.
  11. Biliavska L.A., Efimenko T.A., Efremenkova O.V., Koziritska V.Ye., Iutynska G.A. Identification and antagonistic properties of the soil streptomycete Streptomyces sp. 100. Microbiologichny zhurnal. 2016; 78(2): 27–38.
  12. Tsygankova V.A., Andrusevich Ya.V., Biljavska L.A., Kozyritska V.E., Iutinska H.O., Galkin A.P., Galagan T.O., Boltovska O.V. Growth Stimulating, Fungicidal and Nematicidal Properties of New Microbial Substances and Their Impact on si/miRNA Synthesis in Plant Cells. Microbiologichny zhurnal. 2012; 6: 36–46.
  13. Biliavska L.A., Kozyritska V.E., Kolomiets Y.V., Babich A.G., Iutynska G.O. Phytoprotective and growth-regulatory properties of bioformulations on the base of soil streptomycetes metabolites. Dopovidi NANU. 2015; 1: 131–37.
  14. Valagurova E.V., Kozyritskaya V.E., Iutynska G.A. Actinomycetes of Streptomyces genus. Description of species and computer program of their identification. Kyiv: Naukova dumca, 2004.
  15. Biliavska L.A., Galagan T.A., Boltovskaya E.V., Kozyritska V.E., Valagurova E.V., Sigareva D.D., Iutynska G.A. Antinematicidal properties of Streptomyces avermitilis UCM Ас-2179 and it's avermectin complex of Avercom. Stiinta Agricola. 2009; 1: 29–33.
  16. Biliavska L.O., Kozyritska V.E., Valagurova O.V., Iutynska G.O. Biologically active substances of new microbial preparation Avercom. Microbiol. Z. 2012; 74(3): 10–15.
  17. Biliavska L.A., Efremenkova O.V., Zenkova V.A., Koziritska V.Ye., Iutynska G.A. Soil streptomycete Streptomyces netropsis as a producer of substances with fungicidal action. Current Mycology in Russia. 2015; 5: 175–178.
  18. Viglierchio D.R., Schmitt R.V. On the methodology of nematode extraction from field samples: Baermann funnel modifications. J. Nematology. 1983; 15: 438–444.
  19. Coyne D.L., Nicol J.M., Claudius-Cole B. Practical plant nematology: a field and laboratory guide. SP-IPM Secretariat, IITA, Cotonou, Benin, 2007.
  20. PM 7/119 (1) Nematode extraction. EPPO Bulletin 43. 2013; 43(3): Р. 471–495.
  21. Patent 69639А Ukraine, С12N1/20 №2003109795. Iutynska G.O., Kozyritska V.E., Biliavska L.A., Petruk T.V. Streptomyces avermitilis strain – producer of avermectins, substances of antiparasitic action. Bull. 2004; 9.
  22. Pandey A., Ali I., Butola K.S., Chatterji T., Singh V. Isolation and characterization of Actinomycetes from soil and evaluation of antibacterial activities of Actinomycetes against pathogens. J. Appl. Biol. Pharm. Technol. 2011; 2(4): 384–392.
  23. Srividya S., Adarshana T., Deepika V.B., Kajingailu G., Nilanjan D. Streptomyces sp. 9p as effective biocontrol against chilli soilborne fungal phytopathogens. Eur. J. Exp. Biol. 2012; 2(1): 163–173.
  24. Valli S., Suvathi S.S., Aysha O., Nirmala P., Vinoth K.P., Reena A. Antimicrobial potential Actinomycetes species isolated from marine environment. Asian Pac. J. Trop. Biomed. 2012; 2(6): 469–473.
  25. Tretyakov A.P., Kruchina S.N., Stirmanova N.I., Sadomov V.E. The use of microbiological preparations against root-knot nematodes in greenhouses. Agrokhimiya. 1997; 6: 67–70.
  26. Ventura M., Canchaya C., Tauch A., Chandra G., Fitzgerald G.F., Chater K.F., van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary of an ancient phylum. Microbiol. Mol. Biol. Rev. 2007; 71(3): 495–548.
  27. Jayakumar J. Streptomyces avermitilis as a biopesticide for the management of rootknot nematode, Meloidogyne incognita in tomato. Karanka Journal of Agriculture Science. 2009; 22: 564–566.
  28. Pieterse C.M.J., Leon-Reyes A., Van der Ent S., and Van Wees S.C.M. Networking by small-molecule hormones in plant immunity. Nature chemical biology. 2009; 5(5): 308–316. https://doi.org/10.1038/nchembio.164
  29. Molinari S. Saliciylic acid as an elicitor of resistance to root-knot nematodes in tomato. Acta Hort.(ISHS). 2008; 789: 119–126.
  30. Sun M.H., Gao L., Shi Y.X., Li B.J., Liu X.Z. Fungi and actinomycetes associated with Meloidogyne spp. eggs and females China and their biocontrol potential. J. Invertebr. Pathol. 2006; 93: 22–28.
  31. Takatsu T., Horiuchi N., Ishikawa M., Wanibuchi K., Moriguchi T., Takahashi S. 1100-50, a novel nematocide from Strepomyces lavendulae SANK 6497. J. of Antibiotics. 2003; 56(3): P. 306–309.
  32. Samuel B. Orisajo Effect of Plant-Parasitic Nematodes Associated with Tea in Nigeria. African Journal of Basic & Applied Sciences. 2013; 5(4): 184–187.
  33. Kim S.S., Kang S.I., Kim J.S., Lee Y.S., Hong S.H., Naing Kyaw Wai, Kim K.Y. Biological Control of Root-knot Nematode by Streptomyces sampsonii KK1024. Han'guk Toyang Biryo Hakhoe Chi. 2013; 44(6): 33–39.
  34. Jin J.-l., Wang C., Lei T., Gao P.-J. Isolation and classification of Streptomyces netropsis strain SD-07 which produces polyene macrolide antibiotics with broad-spectrum and high antifungal activity. Journal of Shandong University (Natural Science). 2009; 5: 34–48.
  35. Jang J.Y., Kim J-C., Choi Y.H., Joo Y.-J., Kim H., Jang K.S., Choi G.J., Kim C.-J., Cha B., Park H.W. Characterization of Streptomyces netropsis Showing a Nematicidal Activity against Meloidogyne incognita. Research in Plant Disease. 2015; 21(2): 50–57. https://doi.org/10.5423/RPD.2015.21.2.050
  36. Chubachi K., Furakawa M., Fukuda S., Takahashi S., Matsumura S., Itagawa H., Shimizu T., Nakagawa A. Control of root-knot nematodes by Streptomyces: screening of root-knot nematode controlling actinomycetes and evaluation of their usefulness in a pot test. Nihon Senchu Gakkai Shi. 1999; 29: 42–45.
  37. Rajeswari M., Ramakrishnan S. Influence of Streptomyces fradiae against Root knot nematode Meloidogyne incognitain Tomato. Research Journal of Agriculture and Forestry Sciences. 2015; 3(1): 6–11.
  38. Bérdy J. Bioactive Microbial Metabolites. J. Antibiot. 2005; 58(1): 1–26.
  39. Tang Y.Q., Sattler I., Thiericke R., Grabley S., Feng X.Z. Parallel chromatography in natural products chemistry: isolation of new secondary metabolites from Streptomyces sp. In: Proceeding of the fourth international electronic conference on synthetic organic chemistry. 2000.
  40. Zhang J., Wang L.M., Li Y.H., Ding S.L., Yuan H.X., Riley I.T., Li H.L. Biocontrol of cereal cyst nematode by Streptomyces anulatus isolate S07. Australasian Plant Pathology First online. 2015; 29(4): 663–665.
  41. Ruanpanun P., Laatsch H., Tangchitsomkid N., Lumyong S. Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World J Microbiol Biotechnol. 2011; 27: 1373–1380. https://doi.org/10.1007/s11274-010-0588-z
  42. Ruanpanun P., Tangchitsomkid N., Hyde K.D., Lumyong S. Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 2010; 26: 1569–1578.