Mikrobiol. Z. 2016; 78(4):11-24. Ukrainian.
doi: https://doi.org/10.15407/microbiolj78.04.011

Interaction of Lactobacillus plantarum 337D UKM B-2627 Strain Cells with Clay Minerals in vitro

Garmasheva I.L.1, Kovalenko N.K.1, Pidgorskyi V.S.1, Livins’ka O.P.1, Voychuk S.I.1,
Oleschenko L.T.1, Tomila T.V.2, Lobunets Т.F.2

1Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

2Frantsevich Institute for Problems in Materials Science, NAS of Ukraine
3 Krzhizhanovsky Str., Kyiv, 03680, Ukraine

Objective. To characterize the interaction of Lactobacillus plantarum 337D UKM В-2627 strain, which has probiotic properties, with kaolinite and montmorillonite. Methods. The methods of infrared spectroscopy, transmission electron microscopy, the adsorption-structural static volumetric method, microbiological and statistical methods were used. Results. The characteristics of the porous space of clay mineral particles were practically did not change compared with initial samples during the interaction with L. plantarum 337D UKM В-2627 strain cells, pore size distribution had become wider due to the emergence of large diameter pores, reduced surface area, but the adsorption capacity and the layered structure of clay minerals preserved. For the first time the effect of kaolinite and montmorillonite on growth of L. plantarum 337D strain in vitro was studied. The greatest stimulating effect of clay minerals was observed within two hours of cultivation. The specific growth rate of L. plantarum 337D strain was in 5.2 times higher when cultured in MRS medium with 4 % of kaolinite and 6 times more – in MRS medium with 1 % montmorillonite versus control. The presence in the medium of kaolinite or montmorillonite slowed the process of reducing pH during growth of the L. plantarum 337D strain, compared with the control. In the presence of montmorillonite pH decreased more slowly than in the presence of kaolinite. The difference between initial pH value of medium with 4 % kaolinite and after two h (∆рН) was 10 times less in comparison with the control. At the same time, pH of the medium with 1 % or 4 % montmorillonite began to decrease after 4 hours of cultivation. Conclusions. Different effect on the growth of L. plantarum 337D strain due to differences of physical and chemical characteristics of kaolinite and montmorillonite used in the study.

Key words: lactic acid bacteria, aluminosilicates, kaolinite, montmorillonite.

Full text (PDF, in Ukrainian)

  1. Gordienko A.S., Kurdish I.K., Krasnobrizhiy N.Ya. Vliyanie glinistogo minerala palygorskita na vyzhivaemost bakteriy pri obezvozhivanii. Mikrobiol Z. 1990; 52(5):75–78.
  2. Greg S., Sing K. Adsorbtsiya, udelnaya poverkhnost, poristost. Moscow: Mir, 1984.
  3. Egorov N.S. Promyshlennaya mikrobiologiya. Moscow: Vysshaya shkola, 1989.
  4. Kvasnikov E.I., Grigorov Yu.G., Kovalenko N. K. i dr. Molochnokislye bakterii pishchevaritelnogo trakta i pitanie dolgozhiteley Abkhazii. Mikrobiol Z. 1984; 46(3):11–18.
  5. Kovalenko N.K., Nemirovskaya L.N., Kasumova S.A. Bakteriotsinogennaya i lizotsimstimuliruyushchaya aktivnost molochnokislykh bakteriy. Mikrobiol Z. 1999; 61(6):42–50.
  6. Kurdish I.K., Kigel N.F. Vliyanie vysokodispersnykh materialov na fiziologicheskuyu aktivnost metanotrofnykh bakteriy. Mikrobiol Z. 1997; 59(2):29–35.
  7. Kurdish I.K., Melnikova N.N. Vliyanie glinistykh mineralov na rost i nodulyatsionnuyu aktivnost Bradyrhizobium japonicum. Mikrobiol Z. 2011; 73(4):36–40.
  8. Podgorskiy V.S., Kovalenko N.K., Garmasheva I.L., Livinskaya E.P., Ragulya A.V., Tomila T.V., Lobunets T.F. Nanokompozity na osnove glinistykh materialov i biologicheski aktivnykh kletochnykh komponentov probioticheskikh shtammov molochnokislykh bakteriy. Nanorazmernye sistemy i nanomaterialy: issledovaniya v Ukraine. Pod. red A.G. Naumovets. Kiev: Akademperiodika, 2014. P. 446–450.
  9. Chobotarov A.Yu., Hordiyenko A.S., Kurdysh I.K. Vplyv pryrodnikh mineraliv na rist Azotobacter vinelandii IMV V-7076. Mikrobiol Z. 2010; 72(5):27–31.
  10. Cai Y., Meng X., Cao Y., Lu H., Zhu S., Zhou L. Montmorillonite ameliorates hyperthyroidism of rats and mice attributed to its adsorptive effect. Eur J Pharmacol. 2006; 551:156–161. https://doi.org/10.1016/j.ejphar.2006.08.053
  11. De Man J.C., Rogosa M., Sharpe M.E. A medium for the cultivation of lactobacilli. J Appl Bacteriol. 1960; 23:130–135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x12
  12. Gannon J.T., Manilal V.B., Alexander M. Relationship between cell surface properties and transport of bacteria through soil. Appl Environ Microbiol. 1991; 57:190–193.
  13. Gardiner K.R., Anderson N.H., McCaigue M.D., Erwin P.J., Halliday M.I., Rowlands B.J. Adsorbents as antiendotoxin agents in experimental Colitis. Gut. 1993; 34:51–55. https://doi.org/10.1136/gut.34.1.51
  14. Guarino A., Bisceglia M., Castellucci G. et al. Smectite in the treatment of acute diarrhea: a nationwide randomized controlled study of the Italian Society of Pediatric Gastroenterology and Hepatology (SIGEP) in collaboration with primary care pediatricians. SIGEP Study Group for Smectite in Acute Diarrhea. J Pediatr Gastroenterol Nutr. 2001; 32:71–75. https://doi.org/10.1097/00005176-200101000-00019
  15. IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. I, Colloid and Surface Chemistry. Pure Appl Chem., 1972; 31:578.
  16. Jiang D., Huang Q., Cai P., Rong X., Chena W. Adsorption of Pseudomonas putida on clay minerals and iron oxide. Colloids and Surfaces B: Biointerfaces. 2007; 54:217–221. https://doi.org/10.1016/j.colsurfb.2006.10.030
  17. Li J., Kim I.H. Effects of dietary supplementation of sericite on growth performance, nutrient digestibility, blood profiles and fecal microflora shedding in growing pigs. Anim Feed Sci Technol. 2013; 184:100–104. https://doi.org/10.1016/j.anifeedsci.2013.04.010
  18. Phillips T.D. Dietary clay in the chemoprevention of aflatoxine-induced disease. Toxicol Sci. 1999; 52:118–126. https://doi.org/10.1093/toxsci/52.suppl_1.118
  19. Rong X., Huang Q., He X., Chen H., Cai P., Liang W. Interaction of Pseudomonas putida with kaolinite and montmorillonite: A combination study by equilibrium adsorption, ITC, SEM and FTIR. Colloids and Surfaces B: Biointerfaces. 2008; 64:49–55. https://doi.org/10.1016/j.colsurfb.2008.01.008
  20. Song M., Liu Y., Soares J.A., Che T.M., Osuna O., Maddox C.W. et al. Dietary clays alleviate diarrhea of weaned pigs. J Anim Sci. 2012; 90:345–60. https://doi.org/10.2527/jas.2010-3662
  21. Stotzky G., Rem L.T. Influence of clay minerals on microorganisms. Montmorillonite and kaolinite on bacteria. Can J Microbiol. 1966; 12:547–563. https://doi.org/10.1139/m66-078
  22. Thacker P.A. Performance of growing-finishing pigs fed diets containing graded levels of biotite, an aluminosilicate clay. Asian-Aust J Anim Sci. 2003; 16:1666–1672. https://doi.org/10.5713/ajas.2003.1666
  23. Wang J.P., Chi F., Kim I.H. Effects of montmorillonite clay on growth performance, nutrient digestibility, vulva size, faecal microflora, and oxidative stress in weaning gilts challenged with zearalenone. Anim Feed Sci Technol. 2012; 178:158–166.
  24. Xia M.S., Hu C.H., Xu Z.R., Ye Y., Zhou Y.H., Xiong L. Effects of copper–bearing montmorillonite (Cu-MMT) on Esherichia coli and diarrhea on weanling pigs. AsianAust J Anim Sci. 2004; 17:1712–1716.
  25. Xia M.S., Hu C.H., Xu Z.R. Effects of copper bearing montmorillonite on the growth performance, intestinal microflora and morphology of weanling pigs. Anim Feed Sci Technol. 2005; 118:307–317. https://doi.org/10.1016/j.anifeedsci.2004.11.008
  26. Zhang Y., Wang X., Long L., Liu T., Cao Y. Montmorillonite adsorbs creatinine and accelerates creatinine excretion from the intestine. J Pharm Pharmacol. 2009; 61:459–464. https://doi.org/10.1211/jpp.61.04.0007