Mikrobiol. Z. 2016; 78(3):45-51. Russian.
doi: https://doi.org/10.15407/microbiolj78.03.045

Research of Metachromatic Reaction of Saccharomyces cerevisiae

Gromozova E.N., Kachur T.L., Voychuk S.I., Kharchuk M.S.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

This work is a continuation of research of the Chizhevsky-Velhover’s bio-astronomic effect. Monitoring of volutin granule metachromatic staining of Saccharomyces yeasts (S. cerevisiae UCM Y-517, S. cerevisiae CRY, S. cerevisiae CNX, S. bayanus UCM Y-493, S. unisporus UCM Y-2065, S. rosinii UCM Y-2614, S. exiguus UCM Y-649) under conditions of different space weather was carried out. S. cerevisiae UCM Y-517, which displayed the metachromatic reaction in 96.7 % cases, showed the biggest sensitivity to the space weather changes. The changes in phosphoric metabolism of S. cerevisiae CNX cells, which can not synthesize exopolyphosphatases PPX1 and PPN1 (CF 3.6.1.11), did not influence the metachromatic reaction. Yeast cells grown on wort-agar displayed more intensive metachromatic reaction compared to those grown on YEPD-agar. However, increasing concentration of phosphorus in YEPD-agar improved visualization of the metachromatic staining. The strain S. cerevisiae UCM Y-517 is recommended as a model for monitoring of volutin granules metachromatic reaction in the research project “Heliomed” because of its high sensitivity to the space weather changes.

Key words: yeasts, metachromasy, volutin granules, space weather.

Full text (PDF, in Russian)

  1. Gromozova E.N., Grigorev P.E., Kachur T.L., Voychuk S.I. Vliyanie kosmofizicheskikh faktorov na reaktsiyu metakhromazii volyutinovykh granul Saccharomyces cerevisiae. Biofizicheskie protsessy i biosfera. 2010; 9(2):67-76.
  2. Kratkiy spravochnik po kosmicheskoy biologii i meditsine. Moscow: Meditsina, 1967.
  3. Pirs E. Gistokhimiya: teoreticheskaya i prikladnaya. Moscow: Izd-vo in. lit., 1962.
  4. Praktikum po mikrobiologii: Uchebnoe posobie. Pod red. Egorov N.S. Moscow: Izd-vo Mosk. un-ta, 1976.
  5. Chizhevskaya N.V. K voprosu o globalnoy programme v oblasti geliobiologii. Solntse, elektrichestvo, zhizn. Moscow: Izd-vo MGU, 1972.
  6. Karathia H., Vilaprinyo E., Sorribas A., Alves R. Saccharomyces cerevisiae as a model organisms: a comparative study. PloS One. 2011; 6(2):1-10. https://doi.org/10.1371/journal.pone.0016015
  7. Lichko L., Kulakovskaya T., Pestov N., Kulaev I. Inorganic polyphosphates and exopolyphosphatases in cell compartments of the yeast Saccharomyces cerevisiae under inactivation of PPX1 and PPN1 genes. Biosci. Rep. 2006; 26:45-54. https://doi.org/10.1007/s10540-006-9003-2
  8. Lorenz B., Schröder H.C. Methods for investigation of inorganic polyphosphates and polyphosphate-metabolizing enzymes. Inorganic Polyphosphates. Biochemistry, Biology, Biotechnology. Springer, 1999. P. 217-241.
  9. Serafim L.S., Lemos P.C., Levantesi C., Tandoi V., Santos H., Reis M.A.M. Methods for detection and visualization of intracellular polymers stored by polyphosphateaccumulating microorganisms. Journal of Microbiological Methods. 2002; 51:1-18. https://doi.org/10.1016/S0167-7012(02)00056-8