Mikrobiol. Z. 2016; 78(3):13-25. Ukrainian.
doi: https://doi.org/10.15407/microbiolj78.03.013
Functional and Biological Activity of Pantoea agglomerans Lipopolysaccharides
Bulyhina T.V.1, Varbanets L.D.1, Seyfullina I.I.2, Shmatkova N.V.2
1Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine
2Odessa Mechnikov National University
The lipopolysaccharides (LPS) of the seven strains of Pantoea agglomerans were isolated and chemically identified. It was established that the investigated strains characterized by different relative output of LPS from 5.2 to 14.0 % by dry weight of bacteria. LPS were characterized quite high content of carbohydrates - from 22 to 54 % 2-keto-3-deoxyoctonic acid (KDO) - from 0.39 to 2.22 % and heptose - from 3.3 to 14.00 %. Fatty acids, containing in the chain of 12 to 16 carbon atoms were identified. Lipids A of all tested LPS were characterized by predominant 3-OH-C14:0 acid from 31.7 to 39.3 % depending on the strain. Since all the studied strains of P. agglomerans were sensitive to polymyxin B, it can be concluded that the LPS do not contain in the structure of lipid A, such a substitute as 4-amino-4-deoxy-L-arabinose. One of the ways of changes in the functional and biological properties of LPS is the chemical modification. As modifiers were used complexes of germanium and tin. In the study of serological activity and toxicity of modified LPS it was found that some of them lost both serological and toxic activity. It was revealed that all investigated P. agglomerans LPS decreased the median adhesion and the index of the adhesiveness. The higher concentration of P. agglomerans LPS in the reaction mixture, the less interactions between surface structures of red blood cells and E. coli cells.
Key words: Pantoea agglomerans, lipopolysaccharide, polymyxin B, 4-amino-4-deoxy-L-arabinose, chemical modification, adhesion, complex compounds of germanium (IV) and Tin (IV).
Full text (PDF, in Ukrainian)
- Brilis V.I., Briline T.A., Lentsner Kh.P., Lentsner A.A. Metodika izucheniya adgezivnogo protsessa mikroorganizmov. Laboratornoe delo. 1986; 4:210-212.
- Varbanets L.D., Zdorovenko G.M., Knirel Yu.A. Metody issledovaniya endotoksinov. Kyiv: Naukova dumka, 2006.
- Varbanets L.D., Shubchynskyi V.V., Pokhyl S.I, Seyfullina I.Y., Shmatkova N.V., Samburskyi S.E. Biolohichna aktyvnist natyvnykh i modyfikovanykh lipopolisakharydiv Pragia fontium. Ukr. biokhimichnyi zhurnal. 2009; 81(1):31-40.
- Zelenin K.N. Fiziologicheski aktivnye kompleksy gidrazonov. Sorosovskiy obrazovatelnyi zhurnal. 1996; 12:41-46.
- Lankin G.F. Biometriya. Moscow: Vysshaya shkola, 1980.
- Seyfullina I., Shmatkova N.V., Starikova Z.A. O kompleksoobrazovanii GeCl4 s salitsilalgidrazonami b- i g-piridinkarbonovykh kislot (H2Ns, H2Is) v metanole. Kristallicheskaya i molekulyarnaya struktura [GeCl2(NsHCl)CH3OH]CH3OH. Zhurn. neorgan. khimii. 2004; 49(3):401-407.
- Khan-Mari Len. Supramolekulyarnaya khimiya. Kontseptsii i perspektivy. Moscow: Nauka, 1998.
- Shmatkova N.V., Seyfullina I.I., Arkhipov D.E., Korlyukov A.A. Khelaty tetrakhlorida olova c piridinoilgidrazonami 4-dimetilaminobenzaldegida. Molekulyarnaya i kristallicheskaya struktura [SnCl4(γ-Idb×H)]×CH3CN i [SnCl4(γ-Idb×N)]×DMF. Koord. khimiya. 2015; 41(8):467-473.
- Shmatkova N.V. Produkty kompleksoobrazovaniya SnCl4 s N,O-soderzhashchimi gidrazidami i gidrazonami. Tekhnologicheskiy audit i rezervy proizvodstva. 2012; 3(2):33-34.
- Barash I., Manulis-Sasson S. Recent evolution of bacterial pathogens: the gall-forming Pantoea agglomerans case. Annu. Rev. Phytopathol. 2009; 47:133-152. https://doi.org/10.1146/annurev-phyto-080508-081803
- Carpati C.M. Monophosphoryl lipid A attenuates the effects of endotoxic shock in pigs. Journal of Laboratory and Clinical Medicine. 1992; 119(4):346-353.
- Gavini F.J., Beji M.A., Mielcarek C., Izard D., Kerster K., De Ley J. Transfer of Enterobacter agglomerans (Beyerink 1888) Ewing and File 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int. J. Syst. Bacteriol. 1989; 39(3):337-345. https://doi.org/10.1099/00207713-39-3-337
- Kawa K. IFN-gamma is a master regulator of endotoxin shock syndrome in mice primed with heat-killed Propionibacterium acnes. International Immunology. 2010; 22(3):157-166. https://doi.org/10.1093/intimm/dxp122
- Knirel Y.A., Dentovskaya S.V., Bystrova O.V Relationship of the Lipopolisaccharide structure of Yersinia pestis to resistance to antimicrobial factors. Adv. Exp. Med. Biol. 2007; 603:88-96. https://doi.org/10.1007/978-0-387-72124-8_7
- Methods for the determination of susceptibility of bacteria to antimicrobial agents. EUCAST Definitive document. Clin Microbiol Infect. 1998; 4:291-296. https://doi.org/10.1111/j.1469-0691.1998.tb00061.x
- Rollas S., Guniz Kucukguzel S. Biological Activities of Hydrazone Derivatives. Molecules. 2007; 12:1910-1939. https://doi.org/10.3390/12081910
- Schneerson R. Evaluation of monophosphoryl lipid A (MPL) as an adjuvant. Enhancement of the serum antibody response in mice to polysaccharide-protein conjugates by concurrent injection with MPL. Journal of Immunology. 1991; 147:2136-2140.
- Sergeeva E., Danielle H., Nelson, L.M. Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates. Plant Soil. 2007; 297(1-2):1-13. https://doi.org/10.1007/s11104-007-9314-5
- Trent M.S. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin - resistant mutants and role of a novel lipid - linked donor. J. Biol. Chem. 2001; 276(46):43122-43131. https://doi.org/10.1074/jbc.M106961200
- Vesentini S. et al. Multi-scale analysis of the toraymyxin adsorption cartridge. Part I: molecular interaction of polymyxin B with endotoxins. Int. J. Artif. Organs. 2006; 29:239-250. https://doi.org/10.1177/039139880602900210