Mikrobiol. Z. 2016; 78(3):2-12. Ukrainian.
doi: https://doi.org/10.15407/microbiolj78.03.002

Antimicrobial Properties Surfactants Synthesized under Different Cultivation Conditions of
Acinetobacter calcoaceticus EMV B-7241

Pirog T.P.1,2, Savenko I.V.1, Shevchuk T.A.2, Krutous N.V.1, Iutynska G.O.2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim. To study the antimicrobial properties of the surface-active agents (surfactants) Acinetobacter calcoaceticus IMV B-7241 depending on the availability of yeast autolysate and trace elements in the composition of ethanol-, n-hexadecane- and glycerol-containing media. Methods. Antimicrobial against bacteria (Escherichia coli IEM-1, Bacillus subtilis BT-2), and yeast (Candida albicans D-6) properties of the surfactant was determined by index of the minimum inhibitory concentration (MIC). Surfactants were extracted from supernatant of cultural liquid by mixture of chloroform and methanol (2 : 1). Results. The removal from cultivation medium yeast autolysate and trace element mix and replacing them by copper sulfate and iron sulphate in the medium with ethanol and n-hexadecane, and in the medium with glycerol - by potassium chloride, zinc sulfate and copper sulfate accompanied by decreasing antimicrobial properties of surfactants. The most effective antimicrobial agents were surfactant synthesized on ethanol in the presence of yeast autolysate and trace elements (MIC 9-20 μ/ml), whereas the surfactant obtained under similar cultivation conditions on glycerol and n-hexadecane, inhibited growth of tested bacteria and yeast at higher (9 - 68 and 27 - 54 μ/ml, respectively) concentrations. The minimum inhibitory concentration of surfactant, synthesized in a medium with ethanol (glycerol, n-hexadecane), yeast autolysate and trace elements, correlated with the activity of NADP+-dependent glutamate dehydrogenase - a key enzyme of aminolipids biosynthesis (610 ± 30, 395 ± 24, 397 ± 24 nM min-1·mg-1 protein, respectively). Conclusions. The higher activity of NADP+-dependent glutamate dehydrogenase when growing the strain IMV B-7241 in a medium with ethanol (n-hexadecane), yeast autolysates and trace elements compared to that in a medium with copper sulfate and iron sulfate, as well as an increase enzyme activity in the presence of zinc cations suggests the possibility of increasing synthesis aminolipids by introducing Zn2+ in the medium with ethanol and n-hexadecan. The obtained data indicate the need for studies depending on biological properties of surfactants of the cultivation conditions of producer.

Key words: Acinetobacter calcoaceticus ІМВ В-7241, surfactants, conditions of cultivation, antimicrobial properties.

Full text (PDF, in Ukrainian)

  1. Lakin G.F. Biometriya. Moscow: Vysshaya shkola, 1990.
  2. Pirog T.P., Berehova Kh.A., Savenko I.V., Shevchuk T.A, Iutynska H.O. Antymikrobna diya poverkhnevo-aktyvnykh rechovyn Nocardia vaccinii IMV V-7405. Mikrobiol. Z. 2015; 77(6):2-10.
  3. Pirog T.P., Konon A.D., Sofilkanych A.P., Skochko A.B. Diya poverkhnevo-aktyvnykh rechovyn Acinetobacter calcoaceticus K-4 ta Rhodococcus erythropolis EK-1 na deyaki mikroorhanizmy. Mikrobiol. Z. 2011; 73(3):14-20.
  4. Pirog T.P., Savenko I.V., Sh evchuk T.A. Vliyanie usloviy kultivirovaniya Acinetobacter calcoaceticus IMV V-7241 na antiadgezivnye svoystva poverkhnostno-aktivnykh veshchestv. Mikrobiol. Z. 2016; 78(1):2-12. https://doi.org/10.15407/microbiolj78.01.002
  5. Pirog T.P., Shevchuk T.A., Berehova Kh.A., Kudrya N.V. Osoblyvosti metabolizmu hlyukozy i hlitserolu u Nocardia vaccinii IMV V-7405 - produtsenta poverkhnevo-aktyvnykh rechovyn. Ukr. Biochem. J. 2015; 87(2):66-75.
  6. Pirog T.P., Shevchuk T.A., Mashchenko O.Yu., Parfenyuk S.A., Iutinskaya GA. Vliyanie faktorov rosta i nekotorykh mikroelementov na sintez poverkhnostno-aktivnykh veshchestv Acinetobacter calcoaceticus IMV V-7241. Mikrobiol. Z. 2013; 75(5):19-27.
  7. Andrews J. Determ ination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001; 48(1):5-16. https://doi.org/10.1093/jac/48.suppl_1.5
  8. Bradford M. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72(3):248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  9. Cortes-Sanchez A., Hernandez-Sanchez H., Jaramillo-Flores M. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol. Rec. 2013; 168(1):22-32. https://doi.org/10.1016/j.micres.2012.07.002
  10. Lotfabad B., Shahcheraghi F., Shooraj F. Assessment of antibacterial capability of ramnolipids produced by two indigenous Pseudomonas aeruginosa strains. Jundishapur J. Microbiol. 2013; 6(1):29-35. https://doi.org/10.5812/jjm.2662
  11. Mandal S.M., Barbosa A.E., Franco O.L. Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol. Adv. 2013; 31(5):338-345. https://doi.org/10.1016/j.biotechadv.2013.01.004
  12. Mazzola P.G., Jozala A.F., Novaes L.C.L., Moriel P., Penna T.C.V. Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. Braz. J. Pharm. Sci. 2009; 45(2):241-248. https://doi.org/10.1590/S1984-82502009000200008
  13. Abalos A., Pinazo A., Infante M.R., Casals M., Garci'a F., Manresa A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 2001; 17(5):1367-1371. https://doi.org/10.1021/la0011735
  14. Pirog T.P., Konon A.D., Sofilkanich A.P., Iutinskaya G.A. Effect of surface-active substances of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017, and Nocardia vaccinii K-8 on phytopathogenic bacteria. Appl. Biochem. Microbiol. 2013; 49(4):360-367. https://doi.org/10.1134/S000368381304011X
  15. Rufino R., Luna J., Sarubbo L., Rodrigues L., Teixeira J., Campos-Takaki G. Antimicrobial and anti-adhesive potential of a biosurfactants produced by Candida species. Curr. Microbiol. 2012; 24(8):245-256.
  16. Sharma D., Mandal S.M., Manhas R.K. Purification and characterization of a novel lipopeptide from Streptomyces amritsarensis sp. nov. active against methicillinresistant Staphylococcus aureus. AMB Express. 2014; 4:50. https://doi.org/10.1186/s13568-014-0050-y
  17. Singh A.K., Rautela R., Cameotra S.S. Substrate dependent in vitro antifungal activity of Bacillus sp. strain AR2. Microb. Cell. Fact. 2014; 13:67. https://doi.org/10.1186/1475-2859-13-67
  18. Tareq F.S., Lee M.A., Lee H.S., Lee J.S., Lee Y.J., Shin H.J. Gageostatins A-C, antimicrobial linear lipopeptides from a marine Bacillus subtilis. Mar. Drugs. 2014; 12(2):871-885. https://doi.org/10.3390/md12020871
  19. Vollbrecht E., Rau U., Lang S . Microbial conversion of vegetable oils into surfaceactive di-, tri-, and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella sp. Lipid Fett. 1999; 101(10):389-394. https://doi.org/10.1002/(SICI)1521-4133(199910)101:10<389::AID-LIPI389>3.0.CO;2-9