Mikrobiol. Z. 2016; 78(1):44-53. Ukrainian.
doi: https://doi.org/10.15407/microbiolj78.01.044

Features of Yeast Metabolism in Their Recirculation Provided Alcohol Fermentation of Molasses Wort

Levandovsky L.V.1, Bondar M.V.2

1Kyiv National University of Trade and Economics
19 Kioto Str., Kyiv, 02158, Ukraine

2National University of Food Technology
68 Volodymyrska Str., Kyiv, 01033, Ukraine

The subject of investigation are the peculiarities of yeast metabolism of Saccharomyces cerevisiae M-5 strain in the alcoholic fermentation of molasses wort of increased concentration of dry substances in terms of periodic and continuous fermentation. For periodic alcohol fermentation of wort concentrate having 27 % dry substance content it was established, that 60 g /dm3 is the optimal value for inoculate yeast. This results in the maximal accumulation of ethanol in the mature mash (11.5 vol. %), in the deep assimilation of carbohydrates and by the generation of fewer amount of glycerin.
By industrial uninterrupted-mode investigations the increase in activity of starting enzymes of glycolysis and strengthening in the capacity of recirculated yeast have been demonstrated. For the first time we show, that this is a consequence of adaptation of yeast to the cultural medium as a result of long-term stay of yeast in it. The increase of the inflow speed of molasses wort into the main fermenter of the battery from 0.43 to 0.57 h-1 improves physiological parameters of recirculated yeast. Also, this reduces the accumulation of secondary products of fermentation (ethers, aldehydes, higher alcohols, glycerin). At the same time, this approach allows to increase the yield of alcohol from the saccharose by 1.84 % and to enhance the productivity with respect to ethanol from 2.3 to 3.8 g/dm3×h.

Key words: fermentation, Saccharomyces cerevisiae, yeast recirculation, ethanol, secondary products of metabolism.

Full text (PDF, in Ukrainian)

  1. Velikaya E.I., Sukhodol V.F. Laboratornyi praktikum po kursu obshchey tekhnologii brodilnykh proizvodstv. Moscow: Legkaya i pishch. prom-st, 1983.
  2. Zubchenko V.S., Tkachenko L.V. Stabilizatsiya spyrtoutvoryuyuchoi zdatnosti drizhdzhiv pry zbrodzhuvanni susla pidvyshchenoi kontsentratsii. Kharchova promyslovist. 2011; 10:193–196.
  3. Kochetov G.A. Prakticheskoe rukovodstvo po enzimologii. Moscow: Vysshaya shkola, 1980.
  4. Polygalina G.V. Tekhnokhimicheskiy kontrol spirtovogo i likerovodochnogo proizvodstva. Moscow: Kolos, 1999.
  5. Tekhnolohiya spyrtu. Za redaktsiyeyu prof. V.O. Marynchenka. Vinnytsya: Podillya-2000, 2003.
  6. Typovyi tekhnolohichnyi rehlament oderzhannya melyasno-spyrtovoi brazhky i presovanykh khlibopekarskykh drizhdzhiv: TR U 18.8049, 2004. Kyiv: UkrNDIspyrtbioprod: Ministerstvo ahrarnoi polityky Ukrainy, 2004.
  7. Tikhonova O.V., Molodchenkova O.O., Petrov S.A. Aktivnost geksokinazy i transketolazy v zerne kukuruzy pri ego prorastanii v usloviyakh vodnogo defitsita. Visnik Kharkivskogo natsionalnogo universitetu imeni V.N. Karazina. Seriya: Biologiya. 2007; 6(788):182–185.
  8. Shyyan P.L., Sosnytskyi V.V., Oliynichuk S.T. Inovatsiyni tekhnolohii spyrtovoi promyslovosti. Teoriya i praktyka. Kyiv: Askaniya, 2009.
  9. Ben Chaabene B.F., Aldiquier A.S., Alfenore S., Camelevre X., Blanc P., Bidereux C. Very high ethanol productivity in an innovative continuous two-stage bioreactor with cell recycles. Bioprocess Biosyst. Eng. 2006; 29(1):49–57. https://doi.org/10.1007/s00449-006-0056-1
  10. Bouallagui H., Touhami Y., Hanafi N., Ghariani A., Hamdi M. Performances comparison between three technologies for continuous ethanol production from molasses. Biomass and Bioenergy. 2013; 48:25–32. https://doi.org/10.1016/j.biombioe.2012.10.018
  11. De Andrade R., Cândida Rabelo S., Maugeri Filho F., Maciel Filho R., Carvalho da Costa A. Evaluation of the alcoholic fermentation kinetics of enzymatic hydrolysates from sugarcane bagasse (Saccharum officinarum L.). Journal of Chemical Technology and Biotechnology. 2013; 88(6):1049–1057. https://doi.org/10.1002/jctb.3937
  12. Fakruddin M., Quayum M., Ahmed M., Choudhury N. Analysis of key factors affecting ethanol production by Saccharomyces cerevisiae IFST-072011. Biotechnology. 2012; 11(4):248–252. https://doi.org/10.3923/biotech.2012.248.252
  13. Fernández-López C., Torrestiana-Sánchez B., Salgado-Cervantes M., Mendoza García P., Aguilar-Uscanga M. Use of sugarcane molasses «B» as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations. Bioprocess and Biosystems Engineering. 2012; 35(4):605–614. https://doi.org/10.1007/s00449-011-0633-9
  14. Herrera W.E., Filho R.M. Development of a monitoring hybrid system for bioethanol production. Chemical Engineering Transactions. 2013; 32:943–948.
  15. Kishore Babu N., Balakrishnan K., Raghava R.T., Seshagiri R.G. Comparative study on ethanol production by repeated batch fermentation using an immobilized yeast strain, isolated from toddy sap. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2012; 3(2):833–843.
  16. Vučurović V.M., Razmovski R.N. Ethanol fermentation of molasses by Saccharomyces cerevisiae cells immobilized onto sugar beet pulp. Acta Periodica Technologica. 2012; 43:325–333. https://doi.org/10.2298/APT1243325V