Mikrobiol. Z. 2016; 78(1):23-32. Ukrainian.
doi: https://doi.org/10.15407/microbiolj78.01.023

Physico-Chemical Properties of Achromobacter sp. α-Amylase

Avdiyuk R.V.1, Varbanets L.D.1, Zelena P.P.2, Shepelevich V.V.2

1Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

2Taras Shevchenko National University of Kyiv
2 Hlushkova Ave., Kyiv, 03022, Ukraine

From Achromobacter sp. 7a, that was isolated with Black sea, aquatoria of island Zmiinyi, was isolated enzyme with α-amylase activity, that able also to split the synthetic substrates: p-nitrophenyl-α-D-glucopyranoside and p-nitrophenyl-α, -P-D-xylopyranoside. Methods of isolation and purification of enzyme were selected which included: ammonium sulfate precipitation and affinity sorption on starch, that improved enzyme activity in 7 times in comparison with activity in the supernatant of cultural liquid. α-Amylase showed maximal activity at pH 7.0 and 11.0 and to the temperature 50 °С. Enzyme remained fully stable during 24 hours in the range of pH from 7.0 to 12.0, during 3 hours at a temperature 37 °C and 50 °C at pHopt 7.0, and also 87.5 % and 75 % of initial activity saved during 3 h of incubation at a temperature 37 °C and 50 °C at pHopt 11.0 respectively. It is shown that addition of antihunt agents (ions of calcium, chloride of natrium) did not protect an enzyme from thermoinactivation (60 °C, 70 °С).

Key words: α-amylase, physico-chemical properties, affinity sorption.

Full text (PDF, in Ukrainian)

  1. Avdiyuk K.V. Mikrobni α-amilazy: fizyko-khimichni vlastyvosti, substratna spetsyfichnist ta domenna orhanizatsiya. Ukr. biokhim. zhurn. 2013; 85(4):5–19.
  2. Avdiyuk E.V., Varbanets L.D., Safronova L.A., Kharkevich E.S. Ochistka α-amilaz Aspergillus favus var. oryzae i Bacillus subtilis i ikh svoystva. Biotekhnologiya. 2012; 5(5):91–99.
  3. Varbanets L.D., Borzova N.V. Hlikozydazy mikroorhanizmiv i metody yikh doslidzhennya. Kyiv: Nauk. dumka, 2010.
  4. Petrova I.S. Opredelenie proteoliticheskoy aktivnosti fermentnykh preparatov mikrobnogo proiskhozhdeniya. Prikl. biokhim. i mikrobiol. 1966; 2(1):322–327.
  5. Arikan B. Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15. Bioresource Technol. 2008; 99(8):3071–3076. https://doi.org/10.1016/j.biortech.2007.06.0196
  6. Aygan A., Arikan B., Korkmaz H., Dinçer S., Çolak Ö. Highly thermostable and alkaline α-amylase from a halotolerant-alkaliphilic Bacillus sp. AB68. Braz. J. Microbiol. 2008; 39(3):547−553. https://doi.org/10.1590/S1517-83822008000300027
  7. Aygan A., Sariturk S., Kostekci S., Tanis H. Production and characterization of alkaliphilic alpha-amylase from Bacillus subtilis A10 isolated from soils of Kahramanmaras, Turkey. Afr. J. Microbiol. Res. 2014; 8(21):2168−2173. https://doi.org/10.5897/AJMR2013.65868
  8. Bano S., Ul Qader S.A., Aman A., Syed M.N., Azhar A. Purification and characterization of a novel α-amylase from Bacillus subtilis KIBGE HAS. AAPS Pharm. Sci. Tech. 2011; 12(1):255–261. https://doi.org/10.1208/s12249-011-9586-1
  9. Bernhardsdotter Eva C.M.J., Joseph D. Ng., Owen K. Garriott, Marc L. Pusey Enzymic properties of an alkaline chelator-resistant α-amylase from an alkaliphilic Bacillus sp. isolate L1711. Process Biochem. 2005; 40(7):2401−2408. https://doi.org/10.1016/j.procbio.2004.09.016
  10. Das S., Singh S., Sharma V., Soni M.L. Biotechnological applications of industrially important amylase enzyme. Int. J. Pharm. Sci. 2011; 2(1):486–496.
  11. Gangadharan D., Nampoothiri K.M., Sivaramakrishnan S., Pandey A. Biochemical characterization of raw-starch-digesting alpha amylase purified from Bacillus amyloliquefaciens. Appl. Biochem. Biotech. 2008; 158(3):653–662. https://doi.org/10.1007/s12010-008-8347-4
  12. Hmidet N., Maalej H., Haddar A., Nasri M. A novel α-amylase from Bacillus mojavensis A21: purifcation and biochemical characterization. Appl. Biochem. Biotech. 2010; 162(4):1018–1030. https://doi.org/10.1007/s12010-009-8902-7
  13. Hussain I., Siddique F., Mahmood M.S., Ahmed S.I. A review of the microbiological aspect of α-amylase production. Int. J. Agr. Biol. 2013; 15(5):1029–1034.
  14. Khan J.A., Briscoe S. A study on partial purification and characterization of extracellular alkaline amylases from Bacillus megaterium by solid state fermentation. Int. J. Appl. Biol. Pharm. Tech. 2011; 2(3):37−46.
  15. Kubrak O.I., Storey J.M., Storey K.B., Lushchak V.I. Production and properties of α-amylase from Bacillus sp. BKL20. Can. J. Microbiol. 2010; 56:279−288. https://doi.org/10.1139/W10-014
  16. Mojsov K. Microbial α-amylases and their industrial applications: a review. Int. J. Manag. IT Eng. 2012; 2(10):583–609.
  17. Nurachman Z., Kono A., Radjasa O.K., Natalia D. Identifcation a novel raw-starchdegrading α-amylase from a tropical marine bacterium. Am. J. Biochem. Biotech. 2010; 6(4):300–306. https://doi.org/10.3844/ajbbsp.2010.300.306
  18. Souza P.M., Magalhaes P.O. Application of microbial α-amylase in industry – a review. Braz. J. Microbiol. 2010; 41(4):850–861. https://doi.org/10.1590/S1517-83822010000400004
  19. Uma Maheswar Rao J.L., Satyanarayana T. Hyperthermostable, Ca2+-independent and high maltose-forming α-amylase production by an extreme thermophile Geobacillus thermoleovorans: whole cell immobilization. Appl. Biochem. Biotech. 2009; 159(2):464–477. https://doi.org/10.1007/s12010-009-8587-y
  20. Uma Maheswar Rao J.L., Satyanarayana T. Improving production of hyperthermostable and high maltose-forming α-amylase by an extreme thermophile Geobacillus thermoleovorans using response surface methodology and its applications. Bioresource Technol. 2007; 98:345–352. https://doi.org/10.1016/j.biortech.2005.12.022
  21. Xian L., Wang F., Luo X., Feng Y.-L., Feng J.-X. Purification and characterization of a highly efficient calcium-independent α-amylase from Talaromyces pinophilus 1-95. Plos ONE. 2015; 10(3):e0121531. https://doi.org/10.1371/journal.pone.0121531