Mikrobiol. Z. 2016; 78(1):2-12. Russian.
doi: https://doi.org/10.15407/microbiolj78.01.002

Effect of Cultivation Condition of Acinetobacter calcoaceticus IMV B-7241
on Antiadhesive Properties of Surfactants

Pirog T.P.1,2, Savenko I.V.1, Shevchuk T.A.2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim. To study the effect of growth factors and microelements in composition of ethanol-, n-hexadecane- and glycerol-containing media on antiadhesive properties of Acinetobacter calcoaceticus IMV В-7241 surfactants. Methods. Surfactants were extracted from supernatant of cultural liquid by mixture of chloroform and methanol (2 : 1). The number (%) of attached cells (adhesion) was determined as a ratio of the optical density of the suspension obtained from the materials treated with surfactants to the optical density of the control samples (100 %). Results. Dependence of surfactants antiadhesive properties on presence in the medium of A. calcoaceticus IMB B-7241 cultivation of growth factors and certain microelements, as well as the nature of the carbon source was established. Adhesion of bacteria (Escherichia coli IEM-1, Bacillus subtilis BT-2) and yeast (Candida albicans D-6) on plastic, dutch tile, linoleum, and steel was a minimal (25 - 35 %) after surface treatment with surfactant (0.005 mg/ml) synthesized on ethanol in the presence of yeast autolysate and microelements. Replacement the yeast autolysate and microelement mixture in the composition of ethanol- and n-hexadecane-containing media by copper sulfate and iron sulfate and in the medium with glycerol by KCl, zinc sulfate and copper sulfate accompanied by decreasing antiadhesive properties of synthesized surfactants. Conclusions. The obtained data indicate that the increasing surfactant synthesis does not always the accompanied by the formation of product with the required biological properties and indicate the need for studies depending on biological properties of surfactants of the cultivation conditions of producer.

Key words: Acinetobacter calcoaceticus IMB В-7241, surfactants, conditions of cultivation, antiadhesive properties.

Full text (PDF, in Russian)

  1. Pirog T.P., Shevchuk T.A., Mashchenko O.Yu., Parfenyuk S.A., Iutinskaya G.A. Vliyanie faktorov rosta i nekotorykh mikroelementov na sintez poverkhnostno-aktivnykh veshchestv Acinetobacter calcoaceticus IMB V-7241. Mikrobiol. Z. 2013; 75(5):19-27.
  2. Podgorskiy V.S., Iutinskaya G.O., Pirog T.P. Intensifikatsiya tekhnologiy mikrobnogo sinteza. Kyiv: Nauk. dumka, 2010.
  3. Bharali P., Konwar B.K. Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Appl. Biochem. Biotechnol. 2011; 164(8):1444-1460. https://doi.org/10.1007/s12010-011-9225-z
  4. Cawoy H., Debois D., Franzil L., De Pauw E., Thonart P., Ongena M. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb. Biotechnol. 2015; 8(2):281-295. https://doi.org/10.1111/1751-7915.12238
  5. Cochis A., Fracchia L., Martinotti M.G., Rimondini L. Biosurfactants prevent in vitro  Candida albicans biofilm formation on resins and silicon materials for prosthetic devices. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2012; 113(6):775-761. https://doi.org/10.1016/j.oooo.2011.11.004
  6. Cortes-Sänchez A. de J., Hernändez-Sänchez H., Jaramillo-Flores M.E. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol. Res. 2013; 168(1):22-32. https://doi.org/10.1016/j.micres.2012.07.002
  7. Das P., Yang X.P., Ma L.Z. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity. Front. Microbiol. 2014; 5:696. https://doi.org/10.3389/fmicb.2014.00696
  8. Finkel J.S., Mitchell A.P. Genetic control of Candida albicans biofilm development. Nat. Rev. Microbiol. 2011; 9(2):109-118. https://doi.org/10.1038/nrmicro2475
  9. Kalyani R., Bishwambhar M., Suneetha V. Recent potential usage of surfactant from microbial origin in pharmaceutical and biomedical arena: a perspective. Int. Res. J. Pharm. 2011; 2(8):11-15.
  10. Li X.Y., Mao Z.C., Wang Y.H., Wu Y.X., He Y.Q., Long C.L. ESI LC-MS and MS/MS characterization of antifungal cyclic lipopeptides produced by Bacillus subtilis XF-1. J. Mol. Microbiol. Biotechnol. 2012; 22(2):83-93. https://doi.org/10.1159/000338530
  11. Marchant R., Banat M.I. Biosurfactants: a sustainable replacement for chemical surfactants. Biotechnol. Let. 2012; 34(9):1597-1605. https://doi.org/10.1007/s10529-012-0956-x
  12. Morita T., Fukuoka T., Imura T., Kitamoto D. Mannosylerythritol lipids: production and applications. J. Oleo. Sci. 2015; 64(2):133-141. https://doi.org/10.5650/jos.ess14185
  13. Müller M.M., Hörmann B., Kugel M., Syldatk C., Hausmann R. Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874. Appl. Microbiol. Biotechnol. 2011; 89(3):585-592. https://doi.org/10.1007/s00253-010-2901-z
  14. Pecci Y., Rivardo F., Martinotti M.G., Allegrone G. LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. J. Mass. Spectrom. 2010; 45(7):772-778. https://doi.org/10.1002/jms.1767
  15. Pirog T.P., Antonuk S.I., Karpenko Y.V., Shevchuk T.A. The influence of conditions of Acinetobacter calcoaceticus K-4 strain cultivation on surface-active substances synthesis. Appl. Biochem. Microbiol. 2009; 45(3):272-278. https://doi.org/10.1134/S0003683809030065
  16. Pirog T.P., Konon A.D., Beregovaya K.A., Shulyakova M.A. Antiadhesive properties of the surfactants of Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017, and Nocardia vaccinii IMB B-7405. Microbiology. 2014; 83(6):732-739. https://doi.org/10.1134/S0026261714060150
  17. Rivardo F., Turner R.J., Allegrone G., Ceri H., Martinotti M.G. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl. Microbiol. Biotechnol. 2009; 83(3):541-553. https://doi.org/10.1007/s00253-009-1987-7
  18. Sharma D., Mandal S.M., Manhas R.K. Purification and characterization of a novel lipopeptide from Streptomyces amritsarens is sp. nov. active against methicillinresistant Staphylococcus aureus. AMB Express. 2014; 4:50. https://doi.org/10.1186/s13568-014-0050-y
  19. Singh A.K., Rautela R., Cameotra S.S. Substrate dependent in vitro antifungal activity of Bacillus sp. strain AR2. Microb. Cell Fact. 2014; 13:67. https://doi.org/10.1186/1475-2859-13-67
  20. Tareq F.S., Lee M.A., Lee H.S., Lee J.S., Lee Y.J., Shin H.J. Gageostatins A-C, antimicrobial linear lipopeptides from a marine Bacillus subtilis. Mar. Drugs. 2014; 12(2):871-885. https://doi.org/10.3390/md12020871