Mikrobiol. Z. 2015; 77(5):21-30. Russian.
doi: https://doi.org/10.15407/microbiolj77.06.021

Synthesis of Phytohormones by Nocardia vaccinii EMV B-7405 - Producer of Surfactants

Pirog T.P.1,2, Leonova N.O.2, Shevchuk T.A.2, Panasuk E.V.1, Beregovaya K.A.1, Iutynska G.O.2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim. To study the synthesis of phytohormones (auxins, cytokinins, abscisic acid) under cultivation of Nocardia vaccinii IMV B-7405 (surfactants producer) in media containing different carbon sources (glycerol, refined sunflower oil, as well as waste oil after frying potatoes and meat). Methods. Phytohormones were extracted from supernatants of culture liquid (before or after surfactant separation) by ethylacetate (auxins, abscisic acid) and n-butanol (cytokinins), concentrated and purified by thin-layer chromatography, then quantitative determination was performed using a scanning Sorbfil spectrodensitometer. Results. While growing in medium with refined oil IMV B-7405 strain synthesized 1.8 ± 0.09 g/l extracellular surfactant, also maximum amount of auxins (245 - 770 μ/l) and cytokinins (134 - 348 μ/l). Cultivation of N. vaccinii IMV B-7405 on waste oil was accompanied by decreasing amount of phytohormones to 23 - 84 μg/l (auxins) and 16 - 90 μg/l (cytokinins) and increasing surfactant concentration to 2.3 - 2.6 g/l. The level of abscisic acid synthesis was practically not dependent on the nature of growth substrate, was substantially lower than that of auxins and cytokinins and ranged from 2 to 12 μg/l. Conclusions. Obtained data demonstrate the possibility of using oil-containing industrial waste for the simultaneous synthesis of both surfactants and phytohormones, and indicate the need for studies of the effect of producer cultivation conditions on the biological properties of the target products of microbial synthesis.

Key words: Nocardia vaccinii IMV B-7405, surfactants, phytohormones, biosynthesis, cultivation.

Full text (PDF, in Russian)

  1. Dragovoz I.V., Leonova N.O., Iutinskaya G.A. Sintez fitogormonov shtammami Bradyrhizobium japonicum razlichnoy simbioticheskoy effektivnosti. Mikrobiol. Z. 2011; 73(4):29-35.
  2. Drahovoz I.V., Leonova N.O., Lapa S.V., Piskova O.V., Kryuchkova L.O., Avdyeyeva L.V. Syntez pozaklitynnykh fitohormoniv shtamamy Bacillus, vydilenymy z riznykh pryrodnykh dzherel. Mikrobiol. Z. 2013; 75(3):41-46.
  3. Leonova N.O., Dankevych L.A., Drahovoz I.V., Patyka V.P., Iutynska H.O. Syntez pozaklitynnykh fitohormoniv-stymulyatoriv bulbochkovymy ta fitopatohennymy bakteriyamy soi. Dopovidi NAN Ukrainy. 2013; 3:165-171.
  4. Metodycheskye rekomendatsyi po opredelenyyu fytohormonov. Kyev: Yn-t botanyky AN USSR, 1988.
  5. Morgun V.V., Kots S.Ya., Kirichenko E.V. Roststimuliruyushchie rizobakterii i ikh prakticheskoe primenenie. Fiziologiya i biokhimiya kult. rasteniy. 2009; 41(3):187-207.
  6. Pyroh T.P., Konon A.D., Skochko A.B. Vykorystannya mikrobnykh poverkhnevo-aktyvnykh rechovyn u biolohii ta medytsyni. Biotekhnolohiya. 2011; 4(20):24-38.
  7. Pyroh T.P., Konon A.D., Sofilkanych A.P., Skochko A.B. Antymikrobna diya poverkhnevo-aktyvnykh rechovyn Acinetobacter calcoaceticus K-4 ta Rhodococcus erythropolis EK-1. Mikrobiol. Z. 2011; 73(3):14-20.
  8. Pyroh T.P., Khomyak D.I., Hrytsenko N.A., Sofilkanych A.P., Konon A.D., Pokora Kh.A. Bakterii rodu Nocardia yak ob'yekty biotekhnolohii. Biotechnologia Acta. 2013; 6(3):23-35.
  9. Podgorskiy V.S., Iutinskaya G.O., Pirog T.P. Intensifikatsiya tekhnologiy mikrobnogo sinteza. Kyiv: Nauk. dumka, 2010.
  10. Savinskiy S.V., Kofman I.Sh., Kofanov V.I., Stasevskaya I.L. Metodicheskie podkhody k opredeleniyu fitogormonov s pomoshchyu spektrodensitometricheskoy tonkosloynoy khromatografii. Fiziol. i biokhim. kult. rast. 1987; 19(2):210-215.
  11. Tsavkelova E.A., Klimova S.Yu., Cherdyntseva T.A., Netrusov A.I. Mikroorganizmy - produtsenty stimulyatorov rosta rasteniy i ikh prakticheskoe primenenie. Prikl. biokhim. mikrobiol. 2006; 42(2):133-143.
  12. Baindara P., Mandal S.M., Chawla N., Singh P.K., Pinnaka A.K., Korpole S. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express. 2013; 3:2. https://doi.org/10.1186/2191-0855-3-2
  13. Choi M.H., Xu J., Gutierrez M., Yoo T., Cho Y.H., Yoon S.C. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative 13C NMR analysis of the products in wild-type and mutants. J. Biotechnol. 2011; 151(1):30-42. https://doi.org/10.1016/j.jbiotec.2010.10.072
  14. Colla L.M., Rizzardi J., Pinto M.H., Reinehr C.O., Bertolin T.E., Costa J.A. Simultaneous production of lipases and biosurfactants by submerged and solidstate bioprocesses. Bioresour. Technol. 2010; 101(21):8308-8314. https://doi.org/10.1016/j.biortech.2010.05.086
  15. Hori K., Ichinohe R., Unno H., M arsudi S. Simultaneous syntheses of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa IFO3924 at various temperatures and from various fatty acids. Biochem. Eng. J. 2011; 53(2):196-202. https://doi.org/10.1016/j.bej.2010.10.011
  16. Liang T.W., Wu C.C., Cheng W.T., Chen Y.C., Wang C.L., Wang I.L., Wang S.L. Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl. Biochem. Biotechnol. 2014; 172(2):933-950. https://doi.org/10.1007/s12010-013-0568-5
  17. Marchant R., Banat M.I. Biosurfactants: a sustainable replacement for chemical surfactants. Biotechnol. Let. 2012; 34(9):1597-1605. https://doi.org/10.1007/s10529-012-0956-x
  18. Nambara E., Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 2005; 56:165-185. https://doi.org/10.1146/annurev.arplant.56.032604.144046
  19. Pirog T.P, Konon A.D., Sofilkanich A.P., Iutinskaya G.A. Effect of surface-active substances of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017, and Nocardia vaccinii K-8 on phytopathogenic bacteria. Appl. Biochem. Microbiol. 2013; 499(4):360-367. https://doi.org/10.1134/S000368381304011X
  20. Pirog T.P., Konon A.D., Beregovaya K.A., ShulyakovaM.A. Antiadhesive properties of the surfactants of Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017, and Nocardia vaccinii IMB B-7405. Microbiology. 2014; 83(6):732-739. https://doi.org/10.1134/S0026261714060150
  21. Pirog T.P., Shevchuk T.A., Voloshina I.N., Karpenko E.V Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates. Appl. Biochem. Microbiol. 2004; 40(5):470-475. https://doi.org/10.1023/B:ABIM.0000040670.33787.5f
  22. Plant hormones: biosynthesis, signal transduction, action. Ed. P.J. Davies. Dordrcht. Boston. London. Kluwer Acad. Publishers, 2004.
  23. Raza Z.A., Khan M.S., KhalidZ.M. Evaluation of distant carbon sources in biosurfactant production by a gamma ray-induced Pseudomonas putida mutant. Process Biochem. 2007; 42(4):686-692. https://doi.org/10.1016/j.procbio.2006.10.001
  24. Sharma D., Singh Saharan B. Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int. J. Microbiol. 2014. https://doi.org/10.1155/2014/698713
  25. The rhizosphere: biochemistry and organic substances at the soil-plant interface. Ed. R. Pinton, Z. Varanini, P. Nannipieri. Boca Raton, FL: CRC Press, 2007. https://doi.org/10.1201/9781420005585