Mikrobiol. Z. 2015; 77(5):37-46. Ukrainian.
doi: https://doi.org/10.15407/microbiolj77.05.037
Growth of Micromycetes from Different Ecological Niches on Agar Nutrient Media
Kurchenko I.M., Yurieva E.M., Voychuk S.I.
Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine
Radial growth rate of (Kr) 153 strains 6 species of micromycetes from different ecological niches was studied on 7 agar media: three standard (malt extract agar, potato-dextrose agar, Czapek’s agar), and on agar media with plant polymers (carboxymethylcellulose, xylan, soluble starch and apple pectin). Endophytic and plant pathogenic strains (biotrophs) of all studied species did not differ significantly in their ability to grow on nutrient media of different composition - average values of Kr for these two groups were the same (0.200 and 0.199 mm/h, respectively). Soil micromycetes (saprophytes) characterized by the lowest average growth rate (0.169 mm/h) and significantly differed from the endophytic and plant pathogenic ones. Average of the radial growth rates of studied microscopic fungi were higher on standard nutrient media than with plant polymers ones. Growth parameters of endophytes and plant pathogens of all studied species on various agar media differed from the soil strains. High growth rate of endophytic and plant pathogenic strains of Fusarium poae, Alternaria alternata and Ceratocystis sp. provides them the rapid colonization of plants. Penicillium funiculosum strains equally can exist as saprophytes in soil and as endophytic plant symbionts. A wide range of Kr variation of endophytic dark pigmented Mycelia sterilia indicates the presence in this group of different species of micromycetes, which have no sporulation.
Key words: radial growth rate, micromycetes, endophytes, plant pathogens, saprophytes.
Full text (PDF, in Ukrainian)
- Borovikov V.P. Dlya professionalov. STATISTICA. Iskusstvo analiza dannykh na kompyutere. SPb: PITER, 2003.
- Kamzolkina O. V. Mikromorfologiya i ultrastruktura agarikoidnykh gribov na raznykh stadiyakh zhiznennykh tsiklov: diss. doktora biol. nauk: 03.00.24. Moscow, 2005.
- Kotov V.N. Modelirovanie ranney stadii rosta mitselialnoy kolonii. Doklady AN USSR. Seriya Geologicheskie, khimicheskie i biologicheskie nauki. 1988; 1:70-73.
- Kurchenko I.M. Morfoloho-kulturalni ta fiziolohichni osoblyvosti Fusarium oxysporum (Schlecht.) Snyd. et Hans. sensu lato: avtoref. na zdobuttya nauk. stupenya kand. biol. nauk: 03.00.21. Kyiv: Znannya Ukrainy, 1999.
- Metody eksperimentalnoy mikologii: Spravochnik. Kyiv: Nauk. dumka, 1982.
- Zhdanova N.N., Zakharchenko V.A., Vasilevskaya A.I. i dr. Mikobiota Ukrainskogo Polesya: posledstviya Chernobylskoy katastrofy. Kiev: Nauk. dumka, 2013.
- Panikov N.S. Kinetika rosta mikroorganizmov. Moscow: Nauka, 1991.
- Pert S.Dzh. Osnovy kultivirovaniya mikroorganizmov i kletok. Moscow: Mir, 1978.
- Kochkina G.A., Mirchink T.G., Kozhevin P.A. i dr. Radialnaya skorost rosta gribov v svyazi s ikh ekologiey. Mikrobiologiya. 1978; 47(5):964-965.
- Allan E.J., Prosser J.I. A kinetic study of the colony growth of Streptomyces coelicolor A3(2) and J802 on solid medium. Journal of General Microbiology. 1989; 131(10):2521-2532.
- Yamada S., Cao J., Sumita O. et al. Automatic antifungal activity analyzing system on the basis of dynamic growth process of a single hypha. Mycopathologia. 1992; 118(2):65-69. https://doi.org/10.1007/BF00442533
- Davidson F.A., Park A.W. A mathematical model for fungal development in heterogeneous environments. Applied Mathematics Letters. 1998; 11(6):51-56. https://doi.org/10.1016/S0893-9659(98)00102-5
- Domsch K.H., Gams W., Anderson T.-H. Compendium of soil fungi. Eching: IHW-Verlag, 2007.
- Edelstein L., Segel L.A. Growth and metabolism in mycelial fungi. Journal of Theoretical Biology. 1983; 104(2):187-210. https://doi.org/10.1016/0022-5193(83)90410-1
- Gooday G.W. The dynamics of hyphal growth. Mycological Research. 1995; 99(4):385-394. https://doi.org/10.1016/S0953-7562(09)80634-5
- Lopez-Franco R., BartnickiGarcia S., Bracker C.E. Pulsed growth of fungal hyphal tips. Proceedings of the National Academy of Sciences of the United States of America. 1994; 91(25):12228-12232. https://doi.org/10.1073/pnas.91.25.12228
- Molitoris H.P., Molitoris P., Schaumann K. Physiology of marine fungi. A screening program for marine fungi. The biology of marine fungi, ed. Moss S.T. Cambridge: Cambridge University Press, 1986. P. 35-47.
- Moore D. Fungal morphogenesis. Cambridge: Cambridge University Press, 1998. https://doi.org/10.1017/CBO9780511529887
- Reeslev V., Kjoller A. Comparison of biomass dry weights and radial growth rates of fungal colonies on media solidified with different gelling compounds. Applied and Environmental Microbiology. 1995; 61(12):4236-4239.
- Davidson F.A., Sleeman B.D., Rayner A.D.M. et al. Travelling waves and pattern formation in a model for fungal development. Journal of Mathematical Biology. 1997; 35(5):589-608. https://doi.org/10.1007/s002850050067
- Trinci A.P.J. A kinetics study of the growth of Aspergillus nidulans and other fungi. Journal of General Microbiology. 1969; 57(1):11-24. https://doi.org/10.1099/00221287-57-1-11
- Trinci A.P.J. Influence of the width of the peripheral growth zone on the radial growth rate of fungal colonies on solid media. Journal of General Microbiology. 1971; 67(3):325-344. https://doi.org/10.1099/00221287-67-3-325