Mikrobiol. Z. 2015; 77(5):2-10. Russian.
doi: https://doi.org/10.15407/microbiolj77.05.002

Glucose Metabolism in Surfactants Producer Nocardia vaccinii IMV B-7405

Pirog T.P.1,2, Shevchuk T.A.1, Beregova K.A.2

1Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

2National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

Key enzymes of glucose metabolism were detected in the cells of surfactants producer Nocardia vacdnii IMV B-7405 grown on this substrate.
It has been established that glucose catabolism is performed through gluconate (FAD+- dependent glucose dehydrogenase activity 698 ± 35 nmol·min-1·mg-1 of protein).
Oxidation of gluconate to 6-phosphogluconate is catalised by gluconokinase (178 ± 9 nmol·min-1·mg-1 of protein). 6-Phosphogluconate was involved into pentose phosphate cycle by constitutive NADP+-dependent 6-phosphogluconate dehydrogenase (activity 357 ± 17 nmol·min-1·mg-1 of protein).
The data obtained serve as the basis for theoretical calculations of optimal molar ratio of concentrations of energetically nonequivalent substrates for intensifying the surfactants synthesis on their mixture.

Key words: Nocardia vacdnii IMV В-7405, surfactants, glucose metabolism, activity of enzymes.

Full text (PDF, in Russian)

  1. Kudrya N., Pyroh T. Osoblyvosti syntezu poverkhnevo-aktyvnykh rechovyn Nocardia vaccinii IMV V-7405 na sumishi rostovykh substrativ. Ukrainian food journal. 2013; 2(2):203-209.
  2. Mashchenko O. Yu., Shevchuk T. A., Pyroh T.P. Osoblyvosti metabolizmu hlitserynu u produtsenta poverkhnevo-aktyvnykh rechovyn Nocardia vaccinii IMV V-7405. Na­ukovi pratsi NUKhT. 2013; 50:41-46.
  3. Pirog T.P., Shevchuk T.A., Konon A.D., Shulyakova M.A., Iutinskaya G.A. Sintez poverkhnostno-aktivnykh veshchestv Acinetobacter calcoaceticus IMV V-7241 i Rhodococcus erythropolis IMV As-5017 v srede s glitserinom. Mikrobiol. Z. 2012; 74(1):20-27.
  4. Pyroh T.P., ShulyakovaM.O., Shevchuk T.A. Zmishani substraty u pryrodnykh umovakh i biotekhnolohichnykh protsesakh. Biotechnologia Acta. 2013; 6(6):28-44.
  5. Podgorskiy V.S., Iutinskaya G.A., Pirog T.P. Intensifikatsiya tekhnologiy mi­krobnogo sinteza. Kyiv: Nauk. dumka, 2010.
  6. Sovremennaya mikrobiologiya. Prokarioty. Pod red. Y. Lengelera, G. Drevsa, G. Shlegelya. Vol 1. Moscow: Mir, 2005.
  7. Shulyakova M.O., Pirog T.P. Viznachennya optimalnogo molyarnogo spivvidnoshennya glitserinu ta geksadekanu dlya sintezu poverkhnevo-aktivnikh rechovin Rhodococcus erythropolis IMV As-5017. Naukovi pratsi NUKhT. 2012; 47:33-39.
  8. Andreeva I.G., Golubeva L.I., Kuvaeva T.M., Gak E.R., Katashkina J.I., Mashko S.V. Identification of Pantoea ananatis gene encoding membrane pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and pqqABCDEF operon essential for PQQ biosynthesis. FEMS Microbiol. Lett. 2011; 318(1):55-60. https://doi.org/10.1111/j.1574-6968.2011.02240.x
  9. Avigad G., Alroy Y., Englard S. Purification and properties of a nicotinamide adenine dinucleotide phosphate-linked aldohexose dehydrogeanse from Gluconobacter cerinus. J. Biol. Chem. 1968; 243(8):1936-1941.
  10. Bradford M. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72(3):248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  11. Bridges R.B., Palumbo M.P., Wittenberger C.L. Purification and properties of an NADP-specific 6-phosphogluconate dehydrogenase from Streptococcus faecalis. J. Biol. Chem. 1975; 250(15):6093-6100.
  12. Buch A., Archana G., Naresh Kumar G. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Res. Microbiol. 2008; 159(9-10):635-642. https://doi.org/10.1016/j.resmic.2008.09.012
  13. Chiyonobu T., Shinagawa E., Adachi O., Ameyama M. Purification, crystallization and properties of 2-ketogluconate reductase from Acetobacter rancens. Agric. Biol. Chem. 1976; 40(1):175-184. https://doi.org/10.1271/bbb1961.40.175
  14. Hu A.S., Cline A.L. The regulation of some sugar dehydrogenases in a pseudomonad. Biochim. Biophys. Acta. 1964; 93(2):237-245. https://doi.org/10.1016/0304-4165(64)90371-X
  15. Izu H., Adachi O., Yamada M. Purification and characterization of the Escherichia coli thermoresistant gluconokinase encoded by the gntK gene. FEBS Lett. 1996; 394(1):14-16. https://doi.org/10.1016/0014-5793(96)00923-4
  16. Lessie T.G., Phibbs P.V Jr. Alternative pathways of carbohydrate utilization in pseudomonads. Annu. Rev. Microbiol. 1984; 38:359-388. https://doi.org/10.1146/annurev.mi.38.100184.002043
  17. Milburn C.C., Lamble H.J., Theodossis A., Bull S.D., Hough D.W., Danson M.J., Taylor G.L. The structural basis of substrate promiscuity in glucose dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus. J. Biol. Chem. 2006; 281(21):14796-14804. https://doi.org/10.1074/jbc.M601334200
  18. Ohara H., Uchida K., Yahata M., Kondo H. NAD-specific 6-phosphogluconate dehydrogenase in lactic acid bacteria. Biosci. Biotechnol. Biochem. 1996; 60(4):692-693. https://doi.org/10.1271/bbb.60.692
  19. Pirog T.P., Konon A.D., Shevchuk T.A., Bilets I.V. Intensification of biosurfactant synthesis by Acinetobacter calcoaceticus IMV B-7241 on a hexadecane-glycerol mixture. Microbiology. 2012; 5:565-572. https://doi.org/10.1134/S0026261712050128
  20. Pirog T., Shulyakova M., Sofilkanych A., Shevchuk. T., Maschenko O. Biosurfactant synthesis by Rhodococcus erytropolis IMV Ac-5017, Acinetibacter calcoaceticus IMV B-7241, Nocardia vaccinii IMV B-7405 on byproduct of biodiesel product. Food Bioprod. Process. 2013.
  21. Stournaras C., Maurer P., Kurz G. 6-phospho-D-gluconate dehydrogenase from Pseudomonas fluorescens. Properties and subunit structure. Eur. J. Biochem. 1983; 130(2):391-396. https://doi.org/10.1111/j.1432-1033.1983.tb07165.x
  22. Sygmund C., Staudigl P., Klausberger M., Pinotsis N., Djinovic-Carugo K., Gorton L., Haltrich D., Ludwig R. Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris. Microb. Cell Fact. 2011; 10:106. https://doi.org/10.1186/1475-2859-10-106
  23. Toyama H., Furuya N., Saichana I., Ano Y., Adachi O., Matsushita K. Membranebound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from «Gluconobacter dioxyacetonicus» IFO 3271: molecular properties and gene disruption. Appl. Environ. Microbiol. 2007; 73(20):6551-6556. https://doi.org/10.1128/AEM.00493-07
  24. Wang I.N., Dykhuizen D.E. Variation of enzyme activities at a branched pathway involved in the utilization of gluconate in Escherichia coli. Evolution. 2001; 55(5):897-908. https://doi.org/10.1554/0014-3820(2001)055[0897:VOEAAA]2.0.CO;2
  25. Wheller P.R. Catabolic pathways for glucoce, glycerol and 6-phosphogluconate in Mycobacterium leprae grown in Armadillo tissues. J. Gen. Microbiol. 1983; 129(5):1481-1495.
  26. Yum D.Y., Lee Y.P., Pan J.G. Cloning and expression of a gene cluster encoding three subunits of membrane-bound gluconate dehydrogenase from Erwinia cypripedii ATCC 29267 in Escherichia coli. J. Bacteriol. 1997; 179(21):6566-6572. 
    https://doi.org/10.1128/jb.179.21.6566-6572.1997