Mikrobiol. Z. 2015; 77(4):44-61.
doi: https://doi.org/10.15407/microbiolj77.04.044

Resistance of Microbial Communities from Ecuador Ecosystems
to Representative Toxic Metals - CrO42-, Co2+, Ni2+, Cu2+, Hg2+

Tashyrev O.B.1, Prekrasna Ie.P.1, Tashyreva G.O.1, Bielikova O.Iu.2

1Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

2National Aviation University
1 Cosmonaut Komarov Av., Kyiv, 03680, Ukraine

Microbial communities of the Ecuadorian Andes and volcano Tungurahua were shown to be super resistant to representative toxic metals. Maximum permissible concentrations of toxic metals were 100 ppm of Hg2+, 500 ppm of Co2+ and Ni2+, 1000 and 1500 ppm of Cr(VI), 10000 and 20000 ppm of Cu2+. The effect of metal concentration increasing on the biomass growth, CO2 and H2 synthesis was investigated. Two types of response of microbial communities on the increasing of toxic metals concentrations were discovered. The first type of response is the catastrophic inhibition of microbial growth. The second type of response is the absence of microbial growth inhibition at certain metal concentration gradient. The succession of qualitative structure of Ecuadorian microbial communities was shown for the first time. Bacteria, yeasts and finally fungi consistently dominate in the microbial community at the Cu2+ concentration raising. Microorganisms resistant to ultra-high concentrations of toxic metals (e.g., 3000 ... 20000 ppm of Cu2+) were isolated from Ecuadorian ecosystems. These microorganisms are able to accumulate toxic metals.

Key words: microbial communities of Ecuador, microbial resistance to metals.

Full text (PDF, in English)

  1. Tashirev A.B. Teoreticheskie aspekty vzaimodeystviya mikroorganizmov s metallami. Vosstanovitelnaya transformatsiya metallov. Mikrobiol. Z. 1994; 56(6):76-88.
  2. Tashirev A.B. Teoreticheskie aspekty vzaimodeystviya mikroorganizmov s metallami. Mikrobnaya akkumulyatsiya metallov, obuslovlennaya ikh stereokhimicheskoy analogiey s makroelementami. Mikrobiol. Z. 1994; 56(6):89-100.
  3. Tashirev A.B. Vzaimodeystvie mikroorganizmov s metallami. Mikrobiol. Z. 1995; 57(2):95-104.
  4. Tashyreva H.O., Iutynska H.O., Tashyrev O.B. Stiykist do ioniv Cu2+ antarktychnykh shtamiv Enterobacter hormaechei ta Brevibacterium antarcticum za riznykh umov kultyvuvannya. Mikrobiol. Z. 2009; 71(4):3-9.
  5. Khovrychev M.P. Pogloshchenie ionov medi kletkami Candida utilis. Mikrobiologiya. 1973; 42(5):839-843.
  6. Babich H., Stotzky G. Nickel Toxicity to Microbes: Effect of pH and Implications for Acid Rain. Environmental research. 1982; 29:335-350. https://doi.org/10.1016/0013-9351(82)90035-4
  7. Babich H., Stotzky G. Differential toxicities of mercury to bacteria and bacteriophages in sea and in lake water. Can. J. Microbiol. 1979; 25(11):1252-1257. https://doi.org/10.1139/m79-197
  8. Blackwell K.J., Singleton I., Tobin J.M. Metal cation uptake by yeast: a review Appl Microbiol Biotechnol. 1995; 43:579-584. https://doi.org/10.1007/BF00164757
  9. Chao W.H., Chen Cheryl L.F. Role of exopolymer and acid-tolerance in the growth of bacteria in solutions with high copper ion concentration. L. Gen. Anot Appl. Microbiol. 1991; 37(4):363-370. https://doi.org/10.2323/jgam.37.363
  10. Gupta S.L. Microcystis. Interactive effects of nitrogen and copper on growth of cyanobacterium Microcystis. Bull. Environ. Contam. and Toxicol. 1989; 42(2):270-275. https://doi.org/10.1007/BF01699410
  11. Furst P., Hu S., Hackett R., Hamer D. Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell. 1988; 55(4):705-717. https://doi.org/10.1016/0092-8674(88)90229-2
  12. Ochoa-Herrera V., Leon G., Banihani Q., Field J.A., Sierra-Alvarez. Toxicity of copper(II) ions to microorganisms in biological wastewater treatment systems. Science of the Total Environment. 2011; 412-413:380-385. https://doi.org/10.1016/j.scitotenv.2011.09.072
  13. Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions. Oxford: Pergamon press, 1963.
  14. Tashyrev O., Prekrasna Ie., Tashyreva G., Matvieieva N., Rokitko P., Romanovskaya V. Regularities of metal resistant microorganisms' distribution in natural ecosystems. Ekologichno inzhenerstvo i opazvane na okolnata sreda. 2013; 2:39-50.
  15. Towiner S.B. Copper sulfate helps control microorganisms in reservoirs. Water and Sewage Works. 1976; 123(12):68-70.
  16. Yamamoto H.R., Totsuyama K., Uchiwa. Fungal flora of soil polluted with copper. Soil Biol. Biochem. 1985; 17:785-790. https://doi.org/10.1016/0038-0717(85)90133-6
  17. Zibilski L.M., Wagnar G.H., Bacterial growth and fungal genera distribution in soil amended with sewage sluge containing cadmium, chromium and copper. Soil. Sci. 1982; 134:364-369. https://doi.org/10.1097/00010694-198212000-00004