Mikrobiol. Z. 2015; 77(2):2-8. Russian.
doi: https://doi.org/10.15407/microbiolj77.02.002

Destruction of Oil in the Presence of Cu2+ and Surfactants of Acinetobacter calcoaceticus IMV B-7241,
Rhodococcus erythropolis IMV Ac-5017 and Nocardia vaccinii IMV B-7405

Pirog T.P.1,2, Konon А.D.1, Sofilkanich A.P.1, Shevchuk Т.А.2, Iutinska G.O.2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

The effect of copper cations (0.01-1.0 mM) and surface-active agents (surfactants) of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017 and Nocardia vaccinii IMV B-7405 in the form of culture liquid on the destruction of oil in water (3.0-6.0 g/L) and soil (20g/kg), including in the presence of Cd2+ and Pb2+ (0.01-0.5 mM), was investigated.
It was shown that the degree of oil degradation in water and soil after 20 days in the presence of low concentrations of Cu2+ (0.01-0.05 mM) and culture liquid of strains IMV B-7241, IMV Ac-5017, and IMV B-7405 was 15 - 25 % higher than without copper cations. The activating effect of Cu2+ on the decomposition of complex oil and Cd2+ and Pb2+ pollution was established: after treatment with surfactant of A. calcoaceticus IMV B-7241 and R. erythropolis IMV Ac-5017 destruction of oil in water and soil was 85 - 95 %, and after removal of the copper cations decreased to 45 - 70%.
Intensification of oil destruction in the presence of copper cations may be due to their stimulating effect on the activity of alkane hydroxylases as in surfactant-producing strains, and natural (autochthonous) oxidizing microbiota.

Key words: Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017, Nocardia vaccinii IMV B-7405, surfactant, oil degradation, copper cations, heavy metals.

Full text (PDF, in Russian)

  1. Pyroh T.P., Antonyuk S.I., Sorokina A.I. Vplyv poverkhnevo-aktyvnykh rechovyn Acinetobacter calcoaceticus K-4 na efektyvnist mikrobnoi destruktsii naftovykh zabrudnen. Mikrobiol. Z. 2009; 71(5):8-13.
  2. Pyroh T.P., Shulyakova M.O., Shevchuk T.A., Sofilkanych A.P. Biotekhnolohichnyi potentsial bakteriy rodu Rhodococcus ta yikh metabolitiv. Biotekhnolohiya. 2012; 5(2):51-68.
  3. Pyroh T.P., Khom'yak D.I., Hrytsenko N.A., Sofilkanych A.P., Konon A.D., Pokora Kh.A. Bakterii rodu Nocardia yak ob'yekty biotekhnolohii. Biotechnologia Acta. 2013; 6(3):23-35.
  4. Pyroh T.P., Konon A.D., Sofylkanych A.P. Shevchuk TA, Parfenyuk S.A. Vlyyanye Su2+ na syntez poverkhnostno-aktyvnykh veshchestv Acinetobacter calcoaceticus IMV V 7241 y Rhodococcus erythropolis IMV As-5017. Mikrobiol. Z. 2013; 75(1):3-13.
  5. Pirog T.P., Konon A.D., Pokora K. A., Shevchuk TA., Putinskaya GA. Vliyanie tyazhelykh metallov na sintez poverkhnostno-aktivnykh veshchestv Nocardia vaccinii IMV V-7405. Mikrobiol. Z. 2014; 76(4):9-16.
  6. Guibert L.M., Loviso C.L., Marcos M.S., Commendatore M.G., DionisiHM., Lozada M. Alkane biodegradation genes from chronically polluted subantarctic coastal sediments and their shifts in response to oil exposure. Microb. Ecol. 2012; 64(3):605-616. https://doi.org/10.1007/s00248-012-0051-9
  7. Jurelevicius D., Alvarez VM., Peixoto R., Rosado A.S., Seldin L. The use of a combination of alkB primers to better characterize the distribution of alkane-degrading bacteria. PLoS One. 2013; 8(6). https://doi.org/10.1371/journal.pone.0066565
  8. Lawniczak L., Marecik R., Chrzanowski L. Contributions of biosurfactants to natural or induced bioremediation. Appl. Microbiol. Biotechnol. 2013; 97(6):2327-2339. https://doi.org/10.1007/s00253-013-4740-1
  9. Mulligan C.N. Recent advances in the environmental applications of biosurfactants. Curr. Opin. Colloid Interface Sci. 2009; 14(5):372-378. https://doi.org/10.1016/j.cocis.2009.06.005
  10. Paisse S., Duran R., Coulon F., Goni-Urriza M. Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in hronically polluted coastal sediments? Appl. Microbiol. Biotechnol. 2011; 92(4):835-844. https://doi.org/10.1007/s00253-011-3381-511
  11. Semrau J.D., DiSpirito A.A., Yoon S. Methanotrophs and copper. FEMS Microbiol. Rev. 2010; 34(4):496-531. https://doi.org/10.1111/j.1574-6976.2010.00212.x
  12. Sriram M.I., Gayathiri S., Gnanaselvi U., Jenifer P.S., Mohan Raj S., Gurunathan S. Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metaltolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation. Bioresour. Technol. 2011; 102(19):9291-9295. https://doi.org/10.1016/j.biortech.2011.06.094
  13. Torres Pazmino D.E., WinklerM., Glieder A., Fraaije M.W. Monooxygenases as biocatalysts: classification, mechanistic aspects and biotechnological applications. J. Biotechnol. 2010; 146(1-2):9-24. https://doi.org/10.1016/j.jbiotec.2010.01.021
  14. Tyagi M., da Fonseca M.M., Carvalho C.C. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. 2011; 22(2):231-241. https://doi.org/10.1007/s10532-010-9394-4
  15. van Beilen J.B., Funhoff E.G. Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotechnol. 2007; 74(1):13-21. https://doi.org/10.1007/s00253-006-0748-0
  16. WangL., Wang W., Lai Q., Shao Z. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ. Microbiol. 2010; 12(5):1230-1242. https://doi.org/10.1111/j.1462-2920.2010.02165.x
  17. Wentzel A., Ellingsen T.E., Kotlar H.K., Zotchev S.B., Throne-Holst M. Bacterial metabolism of long-chain n-alkanes. Appl. Microbiol. Biotechnol. 2007; 76(6):1209-1221. https://doi.org/10.1007/s00253-007-1119-1