Mikrobiol. Z. 2015; 77(1):2-8. Russian.
doi: https://doi.org/10.15407/microbiolj77.01.002
The Ways of Increasing Bioconversion of Crude Glycerol in Biosurfactants of
Rhodococcus erythropolis ІМВ Аc-5017, Acinetobacter calcoaceticus ІМВ В-7241 and Nocardia vaccinii IМВ В-7405
Pirog T.P.1,2, Shevchuk T.A.2, Mashchenko O.Yu .1
1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine
2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine
The possibility of surface-active substances (SAS, biosurfactants) synthesis under cultivation of Rhodococcus erythropolis IMВ Ac-5017, Aсinetobacter calcoaceticus IMВ B-7241 and Nocardia vaccinii IMВ B-7405 in the medium with high (to 8 %, v/v) concentration of crude glycerol – by-product of biodiesel production was investigated.
It was established that the increasing inoculum concentration to 10−15 % and content of nitrogen source to twice (as compared to basic medium) allowed realizing the surfactants synthesis by IMВ Ac-5017, IMВ B-7241 and IMВ B-7405 strains in the medium, containing 7−8 % (v/v) of crude glycerol. Under such conditions of cultivation the concentration of extracellular surfactants, synthesized by strains under study, was 3.4−5.3 g/l that is to 1.4−3 times higher than in the basic medium with analogous substrate concentration.
The study of A. calcoaceticus ІМВ В-7241 strain demand for growth factors for surfactants synthesis on crude glycerol (2 %, v/v) allowed excepting the yeast autolysate and microelements from the medium, replacing them by copper sulfate (0.16 μmol/l) and zinc sulfate (38 μmol/l).
Key words: Rhodococcus erythropolis IMВ Ac-5017, Aсinetobacter calcoaceticus IMВ B-7241, Nocardia vaccinii IMВ B-7405, intensification of biosynthesis, biosurfactants, crude glycerol.
Full text (PDF, in Russian)
- Lakin G.F. Biometriya. Moscow: Vysshaya shkola, 1990.
- Pirog T.P., Gritsenko N.A., Khomyak D.I., Konon A.D., Antonyuk S.I. Optimizatsiya sinteza poverkhnostno-aktivnykh veshchestv Nocardia vaccinii K-8 na otkhodakh proizvodstva biodizelya. Mikrobiol. Z. 2011; 73(4):15–23.
- Pirog T.P., Shevchuk T.A., Konon A.D., Shulyakova M.A., Iutinskaya G.A. Sintez poverkhnostno-aktivnykh veshchestv Acinetobacter calcoaceticus IMV V-7241 i Rhodococcus erythropolis IMV As-5017 v srede s glitserinom. Mikrobiol. Z. 2012; 74(1):20–27.
- Pirog T.P., Pokora K.A., Mashchenko O.Yu., Shevchuk T.A. Intensifikatsiya sinteza poverkhnostno-aktivnykh veshchestv Nocardia vaccinii K-8 na tekhnicheskom glitserine. Mikrobiol. Z. 2013; 75(4):13−22.
- Pirog T.P., Shevchuk T.A., Mashchenko O.Yu., Parfenyuk S.A., Iutinskaya G.A. Vliyanie faktorov rosta i nekotorykh mikroelementov na sintez poverkhnostno-aktivnykh veshchestv Acinetobacter calcoaceticus IMV V-7241. Mikrobiol. Z. 2013; 75(5).
- Pirog T.P., Sofilkanich A.P., Pokora K.A., Shevchuk T.A., Iutinskaya G.A. Sintez poverkhnostno-aktivnykh veshchestv Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV V-7241 i Nocardia vaccinii IMV V-7405 na promyshlennykh otkhodakh. Mikrobiol. Z. 2014; 76(2):17–23.
- Podgorskiy V.S., Iutinskaya G.A., Pirog T.P. Intensifikatsiya tekhnologiy mikrobnogo sinteza. Kiev: Nauk. dumka, 2010.
- Choi W. J., Hartono M.R., Chan W.H., Yeo S.S. Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. Appl. Microbiol. Biotechnol. 2011; 89(4):1255–1264. https://doi.org/10.1007/s00253-010-3076-3
- de Faria A.F., Stéfani D., Vaz B.G., Silva Í.S., Garcia J.S., Eberlin M.N., Grossman M.J., Alves O.L., Durrant L.R. Purifi cation and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol. J. Ind. Microbiol. Biotechnol. 2011; 38(7):863−871. https://doi.org/10.1007/s10295-011-0980-1
- de Faria A.F., Teodoro-Martinez D.S., de Oliveira Barbosa G.N., Vaz B.G., Silva I.S., Garcia J.S., Totola M.R., Eberlin M.N., Grossman M., Alves O.L., Durrant L.R. Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Proc. Biochem. 2011; 46(9):1951–1957. https://doi.org/10.1016/j.procbio.2011.07.001
- de Sousa J.R., da Costa Correia J.A., de Almeida J.G.L., Rodrigues S., Pessoa O.D.L., Melo V.M.M., Goncalves L.R.B. Evaluation of a co-product of biodiesel production as carbon source in the production of biosurfactant by Pseudomonas aeruginosa MSIC02. Ibid. 2011; 46(9):1831–1839.
- Liu Y., Koh C.M., Ji L. Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour. Technol. 2011; 102(4):3927−3933. https://doi.org/10.1016/j.biortech.2010.11.115
- Louhasakul Y., Cheirsilp B. Industrial waste utilization for low-cost production of raw material oil through microbial fermentation. Appl. Biochem. Biotechnol. 2013; 169(1):110−122. https://doi.org/10.1007/s12010-012-9965-4
- Pirog T.P., Antonyuk S.I., Karpenko Y.V., Shevchuk TA. The influence of conditions of Acinetobacter calcoaceticus K-4 strain cultivation on surface-active substances synthesis. Appl. Biochem. Micribiol. 2009; 45(3):272−278. https://doi.org/10.1134/S0003683809030065
- Posada J.A., Cardona C.A., Gonzalez R. Analysis of the production process of optically pure D-lactic acid from raw glycerol using engineered Escherichia coli strains. Appl. Biochem. Biotechnol. 2012; 166(3):680−699. https://doi.org/10.1007/s12010-011-9458-x
- Wadekar S.D., Kale S.B., Lali A.M., Bhowmick D.N., Pratap A.P. Utilization of sweetwater as a cost-effective carbon source for sophorolipids production by Starmerella bombicola (ATCC 22214). Prep. Biochem. Biotechnol. 2012; 42(2):125−142. https://doi.org/10.1080/10826068.2011.577883