Mikrobiol. Z. 2021; 83(6):75-94.
doi: https://doi.org/10.15407/microbiolj83.06.075

The Effect of Surfactants of Microbial Origin on Phytopathogenic Microorganisms

T.P. Pirog1,2, D.V. Piatetska1, H.А. Yarova1, G.O. Iutynska2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Biodegradable non-toxic surfactants of microbial origin are multifunctional preparations, which due to antimicrobial activity are promising for use in crop production to control phytopathogenic microorganisms. Studies on the prospects of using microbial surfactants to control the number of phytopathogenic microorganisms are conducted in three directions: laboratory studies of antimicrobial activity of surfactants in vitro, determination of the effect of surfactants on phytopathogens in vegetative experiments in the process of plants growing in a laboratory or greenhouse, post-harvest treatment of fruits and vegetables with solutions of microbial surfactants to extend their shelf life. The review presents literature data on antimicrobial activity of surfactants against phytopathogenic bacteria and fungi in vitro. Antimicrobial activity of surfactants is evaluated by three main parameters: minimum inhibitory concentration, zones of growth retardation of test cultures on agar media and inhibition of growth of test cultures on agar or liquid media. The vast majority of available publications relate to the antifungal activity of surfactant lipopeptides and rhamnolipids, while data on the effect of these microbial surfactants on phytopathogenic bacteria (representatives of the genera Ralstonia, Xanthomonas, Pseudomonas, Agrobacterium, Pectobacterium) are few. The researchers determined the antimicrobial activity of either total lipopeptides extracted with organic solvents from the culture broth supernatant, or individual lipopeptides (iturin, surfactin, fengycin, etc.) isolated from a complex of surfactants, or culture broth supernatant. Lipopeptides synthesized by members of the genus Bacillus exhibit antimicrobial activity on phytopathogenic fungi of the genera Alternaria, Verticillium, Aspergillus, Aureobasidium, Botrytis, Rhizoctonia, Fusarium, Penicillium, Phytophora, Sclerotinia, Curvularia, Colletotrichum, etc. in sufficiently high concentrations. Thus, the minimum inhibitory concentrations of lipopeptides against phytopathogenic fungi are orders of magnitude higher (in average 0.04–8.0 mg/mL, or 40–8000 μg/mL) than against phytopathogenic bacteria (3–75 μg/mL). However, the antifungal activity of lipopeptidecontaining supernatants is not inferior by the efficiency to the activity of lipopeptides isolated from them, and therefore, to control the number of phytopathogenic fungi in crop production, the use of lipopeptidecontaining supernatants is more appropriate. Rhamnolipids synthesized by bacteria of the genus Pseudomonas are more effective antimicrobial agents comparing to lipopeptides: the minimum inhibitory concentrations of rhamnolipids against phytopathogenic fungi are 4–276 μg/mL, which is an order of magnitude lower than lipopeptides. In contrast to the data on the antifungal activity of rhamnolipids against phytopathogens, there are only a few reports in the literature on the effect of these surfactants on phytopathogenic bacteria, whilst the minimal inhibitory concentrations are quite high (up to 5000 μg/mL). The advantage of rhamnolipids as antimicrobial agents compared to lipopeptides is the high level of synthesis on cheap and available in large quantities industrial waste. Currently in the literature there is little information about the effect of surface-active sophorolipids of microbial origin on phytopathogenic fungi, and all these works are mainly about the antifungal activity of sophorolipids. We note that in contrast to surfactant lipopeptides and rhamnolipids, the effective concentration of most sophorolipids, which provides the highest antimicrobial activity against phytopathogens, is higher and reaches 10,000 μg/mL.

Keywords: antimicrobial activity, phytopathogenic fungi, phytopathogenic bacteria, lipopeptides, rhamnolipids, sophorolipids.

Full text (PDF, in English)

  1. Jimoh AA, Lin J. Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicol Environ Saf. 2019; 184:109607. https://doi.org/10.1016/j.ecoenv.2019.109607
  2. Adu SA, Naughton PJ, Marchant R, Banat IM. Microbial biosurfactants in cosmetic and personal skincare pharmaceutical formulations. Pharmaceutics. 2020; 12(11):1099. https://doi.org/10.3390/pharmaceutics12111099
  3. Ribeiro BG, Guerra JMC, Sarubbo LA. Biosurfactants: production and application prospects in the food industry. Biotechnol Prog. 2020; 36(5):e3030. https://doi.org/10.1002/btpr.3030
  4. Adetunji AI, Olaniran AO. Production and potential biotechnological applications of microbial surfactants: An overview. Saudi J Biol Sci. 2021; 28(1):669−79. https://doi.org/10.1016/j.sjbs.2020.10.058
  5. Mnif I, Ghribi D. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J Sci Food Agric. 2016; 96(13):4310−20. https://doi.org/10.1002/jsfa.7759
  6. Crouzet J, Arguelles-Arias A, Dhondt-Cordelier S, Cordelier S, Pršić J, Hoff G, et al. Biosurfactants in plant protection against diseases: rhamnolipids and lipopeptides case study. Front Bioeng Biotechnol. 2020; 8:1014. https://doi.org/10.3389/fbioe.2020.01014
  7. Pirog TP, Paliichuk OI, Iutynska GO, Shevchuk TA. [Prospects of using microbial surfactants in plant growing]. Mikrobiol Z. 2018; 80(3):115−35. Ukrainian. https://doi.org/10.15407/microbiolj80.03.115
  8. Dimkić I, Živković S, Berić T, Ivanović Ž, Gavrilović V, Stanković S, et al. Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1, as potential agents for the control of phytopathogenic bacteria and fungi. Biol Control. 2013; 65(3):312-21. https://doi.org/10.1016/j.biocontrol.2013.03.012
  9. Gong Q, Zhang C, Lu F, Zhao H, Bie X, Lu Z. Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control. 2014; 36(1):8-14. https://doi.org/10.1016/j.foodcont.2013.07.034
  10. Toral L, Rodríguez M, Béjar V, Sampedro I. Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Front Microbiol. 2018; 9:1315. https://doi.org/10.3389/fmicb.2018.01315
  11. Zhou S, Liu G, Zheng R, Sun C, Wu S. Structural and functional insights into iturin W, a novel lipopeptide produced by the deep-sea bacterium Bacillus sp. strain wsm-1. Appl Environ Microbiol. 2020; 86(21):e01597-20. https://doi.org/10.1128/AEM.01597-20
  12. Sanchez L, Courteaux B, Hubert J, Kauffmann S, Renault JH, Clément C, et al. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol. 2012; 160(3):1630−41. https://doi.org/10.1104/pp.112.201913
  13. Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, et al. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res. 2014; 169(7−8):533−40. https://doi.org/10.1016/j.micres.2013.12.001
  14. Borah SN, Goswami D, Sarma HK, Cameotra SS, Deka S. Rhamnolipid biosurfactant against Fusarium verticillioides to control stalk and ear rot disease of maize. Front Microbiol. 2016; 7:1505. https://doi.org/10.3389/fmicb.2016.01505
  15. Yang L, Han X, Zhang F, Goodwin PH, Yang Y, Li J, et al. Screening Bacillus species as biological control agents of Gaeumannomyces graminis var. tritici on wheat. Biological Control. 2018; 118:1-9. https://doi.org/10.1016/j.biocontrol.2017.11.004
  16. Adetunji CO, Adejumo IO, Afolabi IS, Adetunji JB, Ajisejiri ES. Prolonging the shelf life of "Agege Sweet" orange with chitosan-rhamnolipid coating. Horticulture, Environment, and Biotechnology. 2018. https://doi.org/10.1007/s13580-018-0083-2
  17. Sharma V, Garg M, Devismita T, Thakur P, Henkel M, Kumar G. Preservation of microbial spoilage of food by biosurfactant-based coating. Asian J Pharm Clin Res. 2018; 11(2):98−101. https://doi.org/10.22159/ajpcr.2018.v11s2.28592
  18. Pirog T, Beregova K, Geichenko B, Stabnikov V. Application of surface-active substances produced by Nocardia vaccinii IMB B-7405 for the treatment of vegetables. Ukr Food J. 2019; 8(1):99−109. https://doi.org/10.24263/2304-974X-2019-8-1-11
  19. Kaspar F, Neubauer P, Gimpel M. Bioactive secondary metabolites from Bacillus subtilis: a comprehensive review. J Nat Prod. 2019; 82(7):2038−53. https://doi.org/10.1021/acs.jnatprod.9b00110
  20. Legein M, Smets W, Vandenheuvel D, Eilers T, Muyshondt B, Prinsen E, Samson R, Lebeer S. Modes of action of mіcrobial biocontrol in the phyllosphere. Front Microbiol. 2020; 11:1619. https://doi.org/10.3389/fmicb.2020.01619
  21. Malviya D, Sahu PK, Singh UB, Paul S, Gupta A, Gupta AR, et al. Lesson from ecotoxicity: revisiting the microbial lipopeptides for the management of emerging diseases for crop protection. Int J Environ Res Public Health. 2020; 17(4):1434. https://doi.org/10.3390/ijerph17041434
  22. Penha RO, Vandenberghe LPS, Faulds C, Soccol VT, Soccol CR. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations. Planta. 2020; 251(3):70. https://doi.org/10.1007/s00425-020-03357-7
  23. Chen J, Wu Q, Hua Y, Chen J, Zhang H, Wang H. Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine. Appl Microbiol Biotechnol. 2017; 101(23-24):8309-8319. https://doi.org/10.1007/s00253-017-8554-4
  24. Platel R, Chaveriat L, Le Guenic S, Pipeleers R, Magnin-Robert M, Randoux B, et al. Importance of the C12 carbon chain in the biological activity of rhamnolipids conferring protection in wheat against Zymoseptoria tritici. Molecules. 2020; 26(1):40. https://doi.org/10.3390/molecules26010040
  25. Chopra A, Bobate S, Rahi P, Banpurkar A, Mazumder PB, Satpute S. Pseudomonas aeruginosa RTE4: A tea rhizobacterium with potential for plant growth promotion and biosurfactant production. Front Bioeng Biotechnol. 2020; 8:861. https://doi.org/10.3389/fbioe.2020.00861
  26. Sen S, Borah SN, Bora A, Deka S. Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb Cell Fact. 2017;16(1):95. https://doi.org/10.1186/s12934-017-0711-z
  27. Chen J, Liu X, Fu S, An Z, Feng Y, Wang R, et al. Effects of sophorolipids on fungal and oomycete pathogens in relation to pH solubility. J Appl Microbiol. 2020; 128(6):1754−63. https://doi.org/10.1111/jam.14594
  28. Shu Q, Lou H, Wei T, Liu X, Chen Q. Contributions of glycolipid biosurfactants and glycolipid-modified materials to antimicrobial strategy: a review. Pharmaceutics. 2021; 13(2):227. https://doi.org/10.3390/pharmaceutics13020227
  29. McKeen CD, Reilly CC, Pusey PL. Production and partial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilis. Phytopathology. 1986; 76:136-9. https://doi.org/10.1094/Phyto-76-136
  30. Vanittanakom N, Loeffer W, Koch U, Jung G. Fengycin − a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot (Tokyo). 1986; 39:888-901. https://doi.org/10.7164/antibiotics.39.888
  31. Phae CG, Shoda M, Kubota H. Suppressive effect of Bacillus subtilis and it's products on phytopathogenic microorganisms. J Ferment Bioeng. 1990; 69(1):1-7. https://doi.org/10.1016/0922-338X(90)90155-P
  32. Razafindralambo H, Paquot M, Hbid C, Jacques P, Destain J, Thonart P. Purification of antifungal lipopeptides by reversed-phase high-performance liquid chromatography. J Chromatogr. 1993; 639(1):81−5. https://doi.org/10.1016/0021-9673(93)83091-6
  33. Klich MA, Arthur KS, Lax AR, Bland JM. Iturin A: a potential new fungicide for stored grains. Mycopathologia. 1994; 127(2):123−7. https://doi.org/10.1007/BF01103068
  34. Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008; 16(3):115−25. https://doi.org/10.1016/j.tim.2007.12.009
  35. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev. 2010; 34(6):1037-62. https://doi.org/10.1111/j.1574-6976.2010.00221.x
  36. Inès M, Dhouha G. Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides. 2015; 71:100-12. https://doi.org/10.1016/j.peptides.2015.07.006
  37. Mnif I, Ghribi D. Review lipopeptides biosurfactants: Mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers. 2015; 104(3):129-47. https://doi.org/10.1002/bip.22630
  38. Touré Y, Ongena M, Jacques P, Guiro A, Thonart P. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol. 2004; 96(5):1151-60. https://doi.org/10.1111/j.1365-2672.2004.02252.x
  39. Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol. 2005; 69(1):29-38. https://doi.org/10.1007/s00253-005-1940-3
  40. Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, et al. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl Environ Microbiol. 2005; 71(8):4577-84. https://doi.org/10.1128/AEM.71.8.4577-4584.2005
  41. Hu LB, Shi ZQ, Zhang T, Yang ZM. Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol Lett. 2007; 272(1):91-8. https://doi.org/10.1111/j.1574-6968.2007.00743.x
  42. Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact. 2007; 20(4):430-40. https://doi.org/10.1094/MPMI-20-4-0430
  43. Thasana N, Prapagdee B, Rangkadilok N, Sallabhan R, Aye SL, Ruchirawat S, et al. Bacillus subtilis SSE4 produces subtulene A, a new lipopeptide antibiotic possessing an unusual C15 unsaturated beta-amino acid. FEBS Lett. 2010; 584(14):3209-14. https://doi.org/10.1016/j.febslet.2010.06.005
  44. Benitez LB, Velho RV, Lisboa MP, Medina LF, Brandelli A. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J Microbiol. 2010; 48(6):791-7. https://doi.org/10.1007/s12275-010-0164-0
  45. Yánez-Mendizábal V, Zeriouh H, Viñas I, Torres R, Usall J, de Vicente A, et al. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Pathol. 2011; 132(4):609-19. https://doi.org/10.1007/s10658-011-9905-0
  46. Velho RV, Medina LF, Segalin J, Brandelli A. Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia Microbiol (Praha). 2011; 56(4):297-303. https://doi.org/10.1007/s12223-011-0056-7
  47. Waewthongrak W, Pisuchpen S, Leelasuphaku W. Effect of Bacillus subtilis and chitosan applications on green mold (Penicillium digitatum Sacc.) decay in citrus fruit. Postharvest Biol Technol. 2015; 99:44-9. https://doi.org/10.1016/j.postharvbio.2014.07.016
  48. Radovanović N, Milutinović M, Mihajlovski K, Jović J, Nastasijević B, Rajilić-Stojanović M, et al. Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment. Microb Pathog. 2018; 120:71-8. https://doi.org/10.1016/j.micpath.2018.04.056
  49. Adeniji AA, Aremu OS, Babalola OO. Selecting lipopeptide-producing, Fusarium-suppressing Bacillus spp.: metabolomic and genomic probing of Bacillus velezensis NWUMFkBS10.5. Microbiologyopen. 2019; 8(6):e00742. https://doi.org/10.1002/mbo3.742
  50. Hazarika DJ, Goswami G, Gautom T, Parveen A, Das P, Barooah M, et al. Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiol. 2019; 19(1):71. https://doi.org/10.1186/s12866-019-1440-8
  51. Wang Y, Liang J, Zhang C, Wang L, Gao W, Jiang J. Bacillus megaterium WL-3 lipopeptides collaborate against Phytophthora infestans to control potato late blight and promote potato plant growth. Front Microbiol. 2020; 11:1602. https://doi.org/10.3389/fmicb.2020.01602
  52. Pedras MS, Ismail N, Quail JW, Boyetchko SM. Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. Phytochemistry. 2003; 62(7):1105-14. https://doi.org/10.1016/S0031-9422(02)00617-9
  53. Mohammadipour M, Mousivand M, Salehi Jouzani G, Abbasalizadeh S. Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides. Can J Microbiol. 2009; 55(4):395-404. https://doi.org/10.1139/W08-141
  54. Tareq FS, Lee MA, Lee HS, Lee JS, Lee YJ, Shin HJ. Gageostatins A-C, antimicrobial linear lipopeptides from a marine Bacillus subtilis. Mar Drugs. 2014;12(2):871-85. https://doi.org/10.3390/md12020871
  55. Singh AK, Rautela R, Cameotra SS. Substrate dependent in vitro antifungal activity of Bacillus sp. strain AR2. Microb Cell Fact. 2014, 13:67. https://doi.org/10.1186/1475-2859-13-67
  56. Mnif I, Hammami I, Triki MA, Azabou MC, Ellouze-Chaabouni S, Ghribi D. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani. Environ Sci Pollut Res Int. 2015; 22(22):18137-47. https://doi.org/10.1007/s11356-015-5005-6
  57. Mnif I, Grau-Campistany A, Coronel-León J, Hammami I, Triki MA, Manresa A, et al. Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ Sci Pollut Res Int. 2016; 23(7):6690-9. https://doi.org/10.1007/s11356-015-5826-3
  58. Zhang L, Sun C. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl Environ Microbiol. 2018; 84(18):e00445-18. https://doi.org/10.1128/AEM.00445-18
  59. Wu S, Liu G, Zhou S, Sha Z, Sun C. Characterization of antifungal lipopeptide biosurfactants produced by marine bacterium Bacillus sp. CS30. Mar Drugs. 2019; 17(4):199. https://doi.org/10.3390/md17040199
  60. Castro D, Torres M, Sampedro I, Martínez-Checa F, Torres B, Béjar V. Biological control of Verticillium wilt on olive trees by the salt-tolerant strain Bacillus velezensis XT1. Microorganisms. 2020; 8(7):1080. https://doi.org/10.3390/microorganisms8071080
  61. Chakraborty M, Mahmud NU, Gupta DR, Tareq FS, Shin HJ, Islam T. Inhibitory effects of linear lipopeptides from a marine Bacillus subtilis on the wheat blast fungus Magnaporthe oryzae triticum. Front Microbiol. 2020; 11:665. https://doi.org/10.3389/fmicb.2020.00665
  62. Oni FE, Geudens N, Adiobo A, Omoboye OO, Enow EA, Onyeka JT, et al. Biosynthesis and antimicrobial activity of pseudodesmin and viscosinamide cyclic lipopeptides produced by Pseudomonads associated with the cocoyam rhizosphere. Microorganisms. 2020; 8(7):1079. https://doi.org/10.3390/microorganisms8071079
  63. Bais HP, Fall R, Vivanco JM. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 2004; 134(1):307-19. https://doi.org/10.1104/pp.103.028712
  64. Etchegaray A, de Castro Bueno C, de Melo IS, Tsai SM, Fiore MF, Silva-Stenico ME, et al. Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Arch Microbiol. 2008; 190(6):611-22. https://doi.org/10.1007/s00203-008-0409-z
  65. Zeriouh H, Romero D, Garcia-Gutierrez L, Cazorla FM, de Vicente A, Perez-Garcia A. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol Plant Microbe Interact. 2011; 24(12):1540-52. https://doi.org/10.1094/MPMI-06-11-0162
  66. Luo C, Liu X, Zhou X, Guo J, Truong J, Wang X, et al. Unusual biosynthesis and structure of locillomycins from Bacillus subtilis 916. Appl Environ Microbiol. 2015; 81(19):6601-9. https://doi.org/10.1128/AEM.01639-15
  67. Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, et al. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep. 2018; 8(1):4360. https://doi.org/10.1038/s41598-018-22782-z
  68. Abdallah DB, Tounsi S, Gharsallah H, Hammami A, Frikha-Gargouri O. Lipopeptides from Bacillus amyloliquefaciens strain 32a as promising biocontrol compounds against the plant pathogen Agrobacterium tumefaciens. Environ Sci Pollut Res Int. 2018; 25(36):36518-29. https://doi.org/10.1007/s11356-018-3570-1
  69. Medeot DB, Fernandez M, Morales GM, Jofré E. Fengycins from Bacillus amyloliquefaciens MEP218 exhibit antibacterial activity by producing alterations on the cell surface of the pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeruginosa PA01. Front Microbiol. 2020; 10:3107. https://doi.org/10.3389/fmicb.2019.03107
  70. Chen M, Wang J, Liu B, Zhu Y, Xiao R, Yang W, et al. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiol. 2020; 20(1):160. https://doi.org/10.1186/s12866-020-01851-2
  71. Grady EN, MacDonald J, Ho MT, Weselowski B, McDowell T, Solomon O, et al. Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6. BMC Microbiol. 2019; 19(1):5. https://doi.org/10.1186/s12866-018-1380-8
  72. Pirog TP, Lutsay DA, Kliuchka LV, Beregova KA. Antimicrobial activity of surfactants of microbial origin. Biotechnologia Acta. 2019; 12(1):39−57. https://doi.org/10.15407/biotech12.01.039
  73. Pirog TP, Kliuchka LV, Shevchuk TA, Muchnyk FV. [Interrelation of chemical composition and biological properties of microbial surfactants]. Mikrobiol Z. 2019; 81(3):84-104. Ukrainian. https://doi.org/10.15407/microbiolj81.03.084
  74. Lang S, Katsiwela E, Wagner F. Antimicrobial effects of biosurfactants. Lipid Fett. 1989; 91:363-6. https://doi.org/10.1002/lipi.19890910908
  75. Stanghellini ME, Miller RM. Biosurfactants: their identity and potential efficacy in the biological bontrol of zoosporic plant pathogens. Plant Dis. 1997; 81(1):4-12. https://doi.org/10.1094/PDIS.1997.81.1.4
  76. Abalos A, Pinazo A, Infante MR, Casals M, Garcı'a F, Manresa A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 2001; 17:1367-71. https://doi.org/10.1021/la0011735
  77. Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng. 2003; 81(3):316-22. https://doi.org/10.1002/bit.10474
  78. Benincasa M, Abalos A, Oliveira I, Manresa A. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek. 2004; 85(1):1-8. https://doi.org/10.1023/B:ANTO.0000020148.45523.41
  79. Perneel M, D'hondt L, De Maeyer K, Adiobo A, Rabaey K, Höfte M. Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol. 2008; 10(3):778-88. https://doi.org/10.1111/j.1462-2920.2007.01501.x
  80. Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F, et al. Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ. 2009; 32(2):178-193. https://doi.org/10.1111/j.1365-3040.2008.01911.x
  81. Sha R, Jiang L, Meng Q, Zhang G, Song Z. Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. J Basic Microbiol. 2012; 52(4):458-66. https://doi.org/10.1002/jobm.201100295
  82. Goswami D, Handique PJ, Deka S. Rhamnolipid biosurfactant against Fusarium sacchari - the causal organism of pokkah boeng disease of sugarcane. J Basic Microbiol. 2014; 54(6):548-57. https://doi.org/10.1002/jobm.201200801
  83. Nalini S, Parthasarathi R. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresour Technol. 2014; 173:231-8. https://doi.org/10.1016/j.biortech.2014.09.051
  84. Soltani Dashtbozorg S, Miao S, Ju LK. Rhamnolipids as environmentally friendly biopesticide against plant pathogen Phytophthora sojae. Environ Prog Sustain Energy. 2015; 35(1):169-73. https://doi.org/10.1002/ep.12187
  85. Goswami D, Borah SN, Lahkar J, Handique PJ, Deka S. Antifungal properties of rhamnolipid produced by Pseudomonas aeruginosa DS9 against Colletotrichum falcatum. J Basic Microbiol. 2015; 55(11):1265-74. https://doi.org/10.1002/jobm.201500220
  86. Yan F, Xu S, Guo J, Chen Q, Meng Q, Zheng X. Biocontrol of post-harvest Alternaria alternata decay of cherry tomatoes with rhamnolipids and possible mechanisms of action. J Sci Food Agric. 2015; 95(7):1469-74. https://doi.org/10.1002/jsfa.6845
  87. Sha R, Meng Q. Antifungal activity of rhamnolipids against dimorphic fungi. J Gen Appl Microbiol. 2016; 62(5):233-9. https://doi.org/10.2323/jgam.2016.04.004
  88. Rodrigues AI, Gudiña EJ, Teixeira JA, Rodrigues LR. Sodium chloride effect on the aggregation behaviour of rhamnolipids and their antifungal activity. Sci Rep. 2017; 7(1):12907. https://doi.org/10.1038/s41598-017-13424-x
  89. Monnier N, Furlan A, Botcazon C, Dahi A, Mongelard G, Cordelier S, et al. Rhamnolipids from Pseudomonas aeruginosa are elicitors triggering Brassica napus protection against Botrytis cinerea without physiological disorders. Front Plant Sci. 2018; 9:1170. https://doi.org/10.3389/fpls.2018.01170
  90. Monnier N, Cordier M, Dahi A, Santoni V, Guénin S, Clément C, et al. Semipurified rhamnolipid mixes protect Brassica napus against Leptosphaeria maculans early infections. Phytopathology. 2020; 110(4):834-42. https://doi.org/10.1094/PHYTO-07-19-0275-R
  91. Kim BS, Lee JY, Hwang BK. In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag Sci. 2000; 56(12):1029-35. https://doi.org/10.1002/1526-4998(200012)56:12<1029::AID-PS238>3.0.CO;2-Q
  92. Leite GG, Figueirôa JV, Almeida TC, Valões JL, Marques WF, Duarte MD, et al. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum. Biotechnol Prog. 2016; 32(2):262-70. https://doi.org/10.1002/btpr.2208
  93. Clements T, Ndlovu T, Khan S, Khan W. Biosurfactants produced by Serratia species: сlassification, biosynthesis, production and application. Appl Microbiol Biotechnol. 2019; 103(2):589-602. https://doi.org/10.1007/s00253-018-9520-5
  94. Kim K, Yoo D, Kim Y, Lee B, Shin D, Kim EK. Characteristics of sophorolipid as an antimicrobial agent. J Microbiol Biotechnol. 2002; 12(2):235-41.
  95. Yoo DS, Lee BS, Kim EK. Characteristics of microbial biosurfactant as an antifungal agent against plant pathogenic fungus. J Microbiol Biotechnol 2005; 15:1164-9.
  96. Yuan B, Yang S, Chen J. Antimicrobial activity of sophorolipids on pathogenic fungi isolated from fruits. Chin J Appl Environ Biol. 2011; 17(3):330-3. https://doi.org/10.3724/SP.J.1145.2011.00330
  97. Schofield MH, Thavasi R, Gross RA. Modified sophorolipids for the inhibition of plant pathogens. US Patent: 20130085067 A1. Publ. 04.04.2013.
  98. Pirog TP, Konon AD, Sofilkanich AP, Iutinskaia GA. Effect of surface-active substances of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017, and Nocardia vaccinii K-8 on phytopathogenic bacteria. Appl Biochem Microbiol. 2013; 49(4):360-7. https://doi.org/10.1134/S000368381304011X
  99. Gong Z, Yang G, Che C, Liu J, Si M, He Q. Foaming of rhamnolipids fermentation: impact factors and fermentation strategies. Microb Cell Fact. 2021; 20(1):77. https://doi.org/10.1186/s12934-021-01516-3
  100. Rangarajan V, Clarke KG. Process development and intensification for enhanced production of Bacillus lipopeptides. Biotechnol Genet Eng Rev. 2015; 31(1-2):46-68. https://doi.org/10.1080/02648725.2016.1166335