Mikrobiol. Z. 2021; 83(6):55-64.
doi: https://doi.org/10.15407/microbiolj83.06.055

First Report of Potato Viruses Infecting Lamium purpureum in Ukraine

A.M. Kyrychenko1, M.M. Bohdan1, H.O. Snihur1,2, I.S. Shcherbatenko1, I.O. Antipov3

1Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine

2Taras Shevchenko National University of Kyiv
64/13 Volodymyrska Str., Kyiv, 01601, Ukraine

3National University of Life and Environmental Sciences of Ukraine
15 Heroyiv Oborony Str., Kyiv, 03041, Ukraine

Weeds as reservoirs for destructive plant pathogens have a significant impact on the viral epidemiology, ecology and, as a result, on local economy, and are therefore being investigated in many parts of the world. Thus, the aim of this study was to investigate virus occurrence in red dead-nettle plants (Lamium purpureum L.) widespread in urban and field conditions throughout the in the Kyiv region of Ukraine. Methods. Field crop observations, visual diagnosis, biological testing of the virus, immunoassay (ELISA), polymerase chain reaction with reverse transcription (RT-PCR), sanger sequencing of partial genome sequences of PVX, PVY, PVS, PVM. Results. The results obtained in the study indicate that Lamium plants could be alternative weed hosts of number important viral diseases including potatoes and other vegetables. Serological and molecular test results evidence plants were infected by Potato virus X, Potato virus Y, Potato virus M, Potato virus S and therefore Lamium L. species can serve as a potential source of inoculum for wide range of vegetables and ornamentals. This study is the first report of Lamium plants being naturally infected with Potato virus M and Potato virus S in central Europe. Conclusions. These plants are alternative host of mixed infection with viruses belonging to different families: Alphaflexiviridae, Betaflexiviridae and Potyviridae.

Keywords: Lamium purpureum L., red dead-nettle, alternative hosts, Potato virus X, Potato virus Y, Potato virus M, Potato virus S.

Full text (PDF, in English)

  1. Loebenstein G, Katis N. Control of plant virus diseases seed-propagated crops. Preface. Adv Virus Res. 2014; 90. p. 542. https://doi.org/10.1016/B978-0-12-801246-8.09985-6
  2. Plants of the World Online Lamium glaberrimum (K.Koch) Taliev. http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:448850-1
  3. Kyrychenko A, Shcherbatenko I, Mishchenko L. BCMV-ukr: isolate of Bean common mosaic virus revealed in Ukraine. Arch Phytopath Plant Protect. 2019; 52(11–12):1005–1017. https://doi.org/10.1080/03235408.2019.1688448
  4. Antipov I, Spyrydonov V, Melnychuk M. The development of diagnostic real time PCR system for detection of PVX, PVY, PVM, PVS Ukrainian isolates. “Scientific reports of nules of Ukraine”. 2007; 3(8).
  5. Antipov IO. [Biotechnological aspects of molecular diagnostics of latent potato viral infection (Solanum tuberosum L.)]. Abstract of the dissertation cand. agricultural Sciences: 03.00.20; 2008. Ukrainian.
  6. Milne RG. Electron microscopy of in vitro preparations. In: Diagnosis of Plant Virus Diseases. Matthews REF, editor. 1993; p. 215–252. https://doi.org/10.1201/9781351071352-8
  7. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 1987; 4:406–425.
  8. Jukes TH, Cantor CR. Evolution of protein molecules. In: Mammalian Protein Metabolism. Munro HN, editor, Academic Press, New York. 1969; p. 21–132. https://doi.org/10.1016/B978-1-4832-3211-9.50009-7
  9. Fuentes S, Gibbs AJ, Hajizadeh M, Perez A, Adams IP, Fribourg CE, Kreuze J, Fox A, Boonham N, Jones RAC. The Phylogeography of Potato Virus X Shows the Fingerprints of Its Human Vector. Viruses. 2021; 13:644. https://doi.org/10.3390/v13040644
  10. Naveed Kh, Abbas A, Amrao L. Potato virus Y: An evolving pathogen of potato worldwide. Pakistan J Phytopath. 2017; 29:187–191. https://doi.org/10.33866/phytopathol.029.01.0310
  11. Nie B, Singh M, Murphy A, Sullivan A, Xie C, Nie X. Response of Potato Cultivars to Five Isolates Belonging to Four Strains of Potato virus Y. Plant Disease. 2012; 96:1422–1429. https://doi.org/10.1094/PDIS-01-12-0018-RE
  12. Chaudhary P, Kumari R, Singh B, Hallan V, Nagpal AK. First report of potato virus M, potato virus Y and cucumber mosaic virus infection in Solanum nigrum in India. J Plant Pathol. 2019; 101:419. https://doi.org/10.1007/s42161-018-0194-8
  13. Eskarous JK, Habib HM, Kishtah AA, Kistah AA, Ismail MH. A strain of Potato virus Y isolated from Solanum nigrum var. judaicum in Egypt. Phytopathol Mediterr. 1983; 22:53–58.
  14. Krishna R, Srivastava KM, Singh BP. Carriage of a distinct isolate of Potato virus Y in Solanum nigrum L. Curr Sci. 1979; 48:701–770.
  15. Antipov IO, Spyrydonov V, Melnychuk MD. Phylogenetic analysis of capsid protein genes of Ukrainian potato viruses isolates. Scientific Bulletin of Uzhhorod University. Ser. “Biology”. 2007; 20:220–225.
  16. Kaliciak A, Syller J. New hosts of Potato virus Y (PVY) among common wild plants in Europe. Eur J Plant Pathol. 2009; 124:707–713. https://doi.org/10.1007/s10658-009-9452-0
  17. Yun WS, Jung HW, Oh MH, Hahm YI, Kim KH. Variation of potato virus Y isolated from potato, tobacco, pea and weeds in Korea on the C-terminal region of coat protein gene and 3` non-translated region. Plant Pathol J. 2002; 18(3):130–137. https://doi.org/10.5423/PPJ.2002.18.3.130
  18. Kenneth M Smith. A text book of plant viral diseases, 3rd edition, ElsevierInc, New York. 2012; p. 694.
  19. Gadhave KR, Gautam S, Rasmussen DA, Srinivasan R. Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus. Viruses. 2020; 12(7):773. https://doi.org/10.3390/v12070773
  20. Chiunga E, Valkonen JPT. First Report of Five Viruses Infecting Potatoes in Tanzania. Plant Dis. 2013; 97(9):1260. https://doi.org/10.1094/PDIS-02-13-0143-PDN
  21. Hameed A, Iqbal Z, Asad S, Mansoor S. Detection of Multiple Potato Viruses in the Field Suggests Synergistic Interactions among Potato Viruses in Pakistan. Plant Pathol J. 2014; 30(4):407–415. https://doi.org/10.5423/PPJ.OA.05.2014.0039
  22. Fox A, Collins L, Macarthur R, Blackburn L, Northing Ph. New aphid vectors and efficiency of transmission of Potato virus A and strains of Potato virus Y in the UK. Plant Path. 2017; 66(2):325–335. https://doi.org/10.1111/ppa.12561
  23. Lacomme C, Glais L, Bellstedt D, Dupuis B, Karasev A, Jacquot E, editors. Potato virus Y: biodiversity, pathogenicity, epidemiology and management. Springer, Cham. 2017; pp. 141–176. https://doi.org/10.1007/978-3-319-58860-5_6
  24. Bešta-Gajević R, Jerković-Mujkić A, Pilić S, Stanković I, Vučurović A, Bulajić A, Krstić B. Lamium maculatum is a Natural Host for Cucumber mosaic virus. Plant Dis. 2013; 97(1):150. https://doi.org/10.1094/PDIS-08-12-0717-PDN
  25. Chatzivassiliou EK, Mpoumpourakas I, Drossos E, Eleftherohorinos I, Jenser G, Peters D, Katis NI. A different prevalence of weeds susceptible to tomato spotted wilt virus in tobacco and greenhouse cultivated crops in Greece. In: Recent progress on tospovirus research. Peters D, Golbach R, editors. Wageningen Agricultural University, Section Virology. 1998; p. 98.
  26. Chatzivassiliou EK, Boubourakas I, Drossos E, Eleftherohorinos I, Jenser G, Peters D, Katis NI. Weeds in greenhouses and tobacco fields are differentially infected by Tomato spotted wilt virus and infested by its vector species. Plant Dis. 2001; 85:40–46. https://doi.org/10.1094/PDIS.2001.85.1.40
  27. Dikova B. Weeds in sugar-beet crops as virus hosts. Biotechnology and Biotechnological Equipment. 1993; 7(3):32–37. https://doi.org/10.1080/13102818.1993.10819423
  28. Jorda C, Ortega A, Juarez M. New hosts of tomato spotted wilt virus. Plant Dis. 1995; 79:538. https://doi.org/10.1094/PD-79-0538B
  29. Kil EJ, Park J, Lee H, Kim J, Choi HS, Lee KY, Kim CS, Lee S. Lamium amplexicaule (Lamiaceae): a weed reservoir for tomato yellow leaf curl virus (TYLCV) in Korea. Arch Virol. 2014; 159(6):1305–1311. https://doi.org/10.1007/s00705-013-1913-2
  30. Lovisolo O. Virus e piante spontanee. Il Mosaico lieve dellamium nuovo virus di tipo maculatura anulare. Boll Staz Pat VegRoma III ser. 1958; 15:89–137.
  31. Panno S, Ferriol I, Rangel EA, Olmos A, Han C-G, Martinelli F, Rubio L, Davino S. Detection and identification of Fabavirus species by onestep RT-PCR and multiplex RT-PCR. J Virol Meth. 2014; 197:77–82. https://doi.org/10.1016/j.jviromet.2013.12.002
  32. Parrella G, Gognalons P, Selassie KG, Vovlas C, Marchoux G. An update of the host range of tomato spotted wilt virus. J Plant Path. 2003; 85(4):227–264.
  33. Rangel EA, Ferriol I, Panno S, Davino S, Olmos A, Rubio L. The complete genome sequence of Lamium mild mosaic virus, a member of the genus Fabavirus. Arch Virol. 2013; 158:2405. https://doi.org/10.1007/s00705-013-1732-5
  34. Stobbs LW, Broadbent AB, Allen WR, Stirling AL. Transmission of tomato spotted wilt virus by the western flower thrips to weeds and native plants found in southern Ontario. Plant Disease. 1992; 76:23–29. https://doi.org/10.1094/PD-76-0023
  35. Tomlinson JA, Carter AL, Dale WT, Simpsom CJ. Weed plants as sources of cucumber mosaic virus. Ann Appl Biol. 1970; 66:11–16. https://doi.org/10.1111/j.1744-7348.1970.tb04597.x
  36. Yamasaki S, Okazaki S, Okuda M. Temporal and spatial dispersal of Melon yellow spot virus in cucumber greenhouses and evaluation of weeds as infection sources. Europ J Plant Path. 2012; 132(2):139–177. https://doi.org/10.1007/s10658-011-9860-9
  37. Zhang L, Lockhart B, Dahal G, Olszewski N. Studies on biology and genomic characterization of a caulimo-like virus associated with a leaf distortion disease of Lamium maculatum. Arch Virol. 2008; 153(6):1181–1184. https://doi.org/10.1007/s00705-008-0093-y
  38. Zitter TA. A Checklist of Major Weeds and Crops as Natural Hosts for Plant Viruses in the Northeast. Vegetable MD online. Department of Plant Pathology, Cornell University, Ithaca, NY, New York. https://www.vegetables.cornell.edu/pest-management/disease-factsheets/a-checklist-of-major-weedsand-crops-as-natural-hosts-for-plant-viruses-inthe-northeast/