Mikrobiol. Z. 2021; 83(6):20-31.
doi: https://doi.org/10.15407/microbiolj83.06.020

Biotechnology of Newly Created Bacterial Composition for Siloing Based on Lactic Acid Bacteria

S.G. Danylenko1, O.V. Naumenko1, A.S. Onishchenko1, S M. Teterina2, M.O. Khonkiv1, S.O. Skrotskyi3

1Institute of Food Resources, NAAS of Ukraine
4A Eugene Sverstyuka Str., Kyiv, 02000, Ukraine

2National University of Food Technologies
68 Vladimirskaya Str., Kyiv, 01601, Ukraine

3Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine

Peculiarities of high-quality silage production are the use of biological products based on lactic acid bacteria. The composition of such starters varies greatly according to the use of bacterial cultures, so among the starters available on the market, the range of their effectiveness is also different. It is very common to use a one-sided approach to the choice of bacterial components, which in combination with imperfect production technology have low preservative activity. The study of combined preparations, which combine homo- and heterofermentative types of lactic acid fermentation, allows to stabilize the preservative properties throughout the ensiling time, and increase the aerobic stability of the silage after access of oxygen. Aim. Development of biotechnology of bacterial preparation for corn ensiling, optimization of cultivation conditions of newly created bacterial composition, and selection of cryoprotectants for its lyophilization. Methods. The combined preparation was created on the basis of heterofermentative strain Lactobacillus buchneri 3806 combining it in two- and three-strain compositions with other representatives of lactic acid bacteria, which are characterized by obligate homofermentative and facultative heterofermentative types of metabolism. Optimization of the environment and technological parameters was carried out using a central-compositional plan, further statistical analysis of the obtained data and determination of optimal values of input parameters according to the created mathematical model of optical density response. The effectiveness of the selected protective media was tested for the survival of bacteria after lyophilization. Results. The most effective bacterial composition was found during experiments: L. buchneri 3806, Enterococcus faecium C-8-12, L. plantarum 3216. The effectiveness of the obtained composition was tested by laboratory silage of corn. Tests of the drug based on the selected bacterial composition showed an improvement in the chemical composition of the silage compared to the untreated control and treated only with monoculture L. buchneri 3806, namely: there was a decrease in dry matter loss by 2.21% and 2.04%, 22 due to the increase of lactic acid content, and increase of aerobic stability of silage – 341 h against 57 h of the control sample, and 313 h in case of using monoculture. For the obtained bacterial composition, the culture medium of the following composition was optimized: base (hydrolyzed milk with the addition of the following components: monosubstituted potassium phosphate – 2 g/L; 5-aqueous manganese sulfate – 0.05 g/L; 7-aqueous magnesium sulfate – 0.2 g/L; twin-80 – 1.0 g/L); glucose – 19.7 g/L; yeast extract – 7.8 g/L; corn extract – 23.6 g/L; peptone – 9.1 g/L; sodium citrate – 6.6 g/L; sodium acetate – 3,4 g/L. Cultivation of the bacterial composition on an optimized medium made it possible to obtain the maximum biomass yield, at which the optical density was 2.01 units, which is almost twice as much as the value obtained by culturing the same composition in MRS medium. The optimal technological parameters of culturing the bacterial composition were established, namely the best growth was observed at a temperature of 36.4±0.4°C with constant maintenance of the pH value in the culture medium at the level of 6.5±0.1 units. In addition, the optimal composition of the protective medium containing sodium citrate, sucrose and agar was selected, and ensures the survival rate of lactic acid bacteria 98.4% after lyophilization. Conclusions. The newly formed bacterial composition can be used for the production of preparations for corn silage, and tested on other raw materials, in particular on some perennial legumes (alfalfa, clover), and the conditions of its production can be used to scale the technology.

Keywords: silage, lactic acid bacteria, biopreparation, optimization, central-composition plan, nutrient medium, technological parameters, protective environment.

Full text (PDF, in English)

  1. Ben Meir YA, Jami E, Portnik Y, Yaacoby S, Chen Y, Ogunade IM, et al. Effect of silage inoculants on the quality of baled whole‐crop wheat silages and milking cow performance. Grassland Science. 2018; 64(3):207–214. https://doi.org/10.1111/grs.12196
  2. Blajman JE, Vinderola G, Paez RB, Signorini ML. The role of homofermentative and heteroermentative lactic acid bacteria for alfalfa silage: a meta-analysis. The Journal of Agricultural Science. 2020; 158 (1–2):107–118. https://doi.org/10.1017/S0021859620000386
  3. Danylenko S, Teterina S, Khonkiv M. [Naukove obhruntuvannia novykh tekhnolohichnykh pryiomiv stvorennia biopreparativ dlia zahotivli sylosovanykh kormiv]. Prodovolchi resursy. 2020; 14:67–79. Ukrainian. https://doi.org/10.31073/foodresources2020-14-08
  4. Zielińska KJ, Fabiszewska AU. Improvement of the quality of maize grain silage by a synergistic action of selected lactobacilli strains. World Journal of Microbiology and Biotechnology. 2018; 34(1):1–8. https://doi.org/10.1007/s11274-017-2400-9
  5. Polak-Berecka M, Wasko A, Kordowska-Wiater M, Podlesny M, Targonski Z, Kubik-Komaret A. Optimization of medium composition for enhancing growth of Lactobacillus rhamnosus PEN using response surface methodology. Pol J Microbiol. 2010; 59 (2):113–118. https://doi.org/10.33073/pjm-2010-017
  6. Meena GS. Growth characteristics modeling of Lactobacillus acidophilus using RSM and ANN. Brazilian Archives of Biology and Technology. 2014; 57(1):15–22. https://doi.org/10.1590/S1516-89132014000100003
  7. Whitlock LA, Wistuba TJ, Seifers MK, Pope RV, Bolsen KK. Effect of level of surface-spoiled silage on the nutritive value of corn silage diets. J Dairy Sci. 2000; 83(1):110. https://doi.org/10.4148/2378-5977.1785
  8. Sychevskyi MP, Kopylova K V, D anylenko SH. [Effektivnost’ preparata Senosil dlja konservirovanija silosa]. Zernovye produkty i kombikormy. 2016; 3(63):16–21. Ukrainian.
  9. Kurnaev OM. [Vplyv tekhnologii zagotivli sinazhu na vtraty syrogo proteinu ta iogo fraktsiinyi sklad uprodovzh zberigannya]. Kormy i kormovyrobnytstvo. Mizhvidomchyi tematychnyi naukovyi zbirnyk. Vinnitsia: 2010; 66:274–280. Ukrainian.
  10. Dogi CA, Pellegrino M, Poloni V, et al. Efficacy of corn silage inoculants on the fermentation quality under farm conditions and their influence on Aspergillus parasitucus, A. flavus and A. fumigatus determined by q-PCR. Food Additives & Contaminants. Part A: 2015; 32(2):229–235. https://doi.org/10.1080/19440049.2014.986223
  11. Corsetti A, Gobbetti M, Rossi J, et al. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. J Appl Microbiol and Biotechnol. 1998; 50:253–256. https://doi.org/10.1007/s002530051285
  12. Vajsbah F. [Budushhee konservirovanija kormov]. Problemy biologii produktivnyh zhivotnyh. 2012; 2:49–70. Russian.
  13. Krooneman J, Faber F, Flderkamp AC, et al. Lactobacillus diolivorans sp. now, a 1,2-propanediol – degrading bacterium isolated from aerobically stable maize silage. Front Envir Microbiol. 2002; 52:639–646. https://doi.org/10.1099/00207713-52-2-639
  14. Driehuis F, Oude Elferink SJ WH, Spolestra SF. Anaerobic lactic acid degradation during ensilage of whole−crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. J Appl Microbiol. 1999; 87(4):583−594. https://doi.org/10.1046/j.1365-2672.1999.00856.x
  15. Xu D, Ding W, Ke W, Li F, Zhang P, Guo X. Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri. Front Microbiol. 2019; 9:3299. https://doi.org/10.3389/fmicb.2018.03299
  16. Shütz H, Radler F. Anaerobic reduction of glycerol to propanediol – 1,3 by L. brevis and L. buchneri. Systematic and Applied Microbiology. 1984; 5:169–178. https://doi.org/10.1016/S0723-2020(84)80018-1
  17. Inglis GD, Yanke LJ, Kawchuk LM, McAllister TA. The influence of bacterial inoculants on the microbial ecology of aerobic spoilage of barley silage. Can J Microbiol. 1999; 45:77–87. https://doi.org/10.1139/w98-207
  18. Danner H, Holzer M, Mayrhuber E, Braun R. Acetic acid increases stability of silage under aerobic conditions. Appl Environ Microbiol. 2003; 69:562–567. https://doi.org/10.1128/AEM.69.1.562-567.2003
  19. Pang H, Zhang M, Qin G, et al. Identification of lactic acid bacteria isolated from corn stovers. Anim Sci J. 2011; 82(5):642–53. https://doi.org/10.1111/j.1740-0929.2011.00894.x
  20. Kostenko VM, Panko VV, Syrovatko KM. [Praktykum z hodivli silskohospodarskykh tvaryn]. In: Khimichnyi sklad, otsinka pozhyvnosti ta yakosti kormiv. Vol. I.  Vinnytsia: RVV VSAU; 2008. Ukrainian.
  21. DSTU 7169:2010. [Kormy, kombikormy, kombikormova syrovyna. Metody vyznachannia vmistu azotu i syroho proteinu]. Ukrainian.
  22. Velikaya E, Suhodol V. [Laboratornyiy praktikum po kursu obschey tehnologii brodilnyih proizvodstv (obschie metodyi kontrolya)]. 2th ed. Moscow: Legkaya i pischevaya promst; 1983. Russian.
  23. DSTU 8564:2015. [Kormy dlya tvaryn, syrovyna dlya vyhotovlennya povnoratsionnykh sumishey, vydilennya tvaryn. Metody vyznachannya vmistu orhanichnykh kyslot]. Ukrainian.
  24. DSTU 7643:2014. [Kormy dlya tvaryn. Metody vyznachannya amiachnoho azotu i aktyvnoyi kyslotnosti (pH)]. Animal feed. Methods for determination of ammonia nitrogen and active acidity (pH). Ukrainian.
  25. Burns P, Borgo MF, Binetti A, et al. Isolation, characterization and performance of autochthonous spray dried lactic acid bacteria in maize micro and bucket-silos. Front Microbiol. 2018; 9:1–11. https://doi.org/10.3389/fmicb.2018.02861
  26. Siedler S, Balti R, Neves AR. Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Current opinion in biotechnology. 2019; 56:138–146. https://doi.org/10.1016/j.copbio.2018.11.015
  27. Saarisalo E, Skyttä E, Haikara A, et al. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. J Appl Microbiol. 2007; 102: 327–336. https://doi.org/10.1111/j.1365-2672.2006.03103.x
  28. Khonkiv M, Teterina S, Danylenko S, Potemska O. [Vykorystannia bahatokryterialnoi optymizatsii pozhyvnoho seredovyshcha dlia nakopychennia biomasy molochnokyslykh bakterii]. Naukovi pratsi NUKhT. 2020; 26(4):46–57. Ukrainian. https://doi.org/10.24263/2225-2924-2020-26-4-7
  29. Danylenko S. [Zberihannia kultur molochnokyslykh mikroorhanizmiv]. Naukovi pratsi NUKhT. 2015; 21(1):28–32. Ukrainian.