Mikrobiol. Z. 2021; 83(3):46-55.
doi: https://doi.org/10.15407/microbiolj83.03.046

The Effect of Phosphorus Metabolism on the Motion of Saccharomyces cerevisiae Volutin Granules

M.S. Kharchuk, E.N. Gromozova

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

It is known that moving volutin granules (“dancing bodies”), mechanism of which occurrence remains poorly understood, can be observed in yeast vacuoles. This study was performed to reveal the presence of a connection between moving volutin granules of Saccharomyces cerevisiae and polyphosphate metabolism in conditions of phosphoric starvation and hypercompensation. Methods. Cytological, biochemical, statistical methods were used in the study. Results. It was observed that the inactivation of the PPN1 gene, which encodes exopolyphosphatase Ppn1, resulted in a change in the number of cells with moving volutin granules (“dancing bodies” index) in the studied conditions. The index of “dancing bodies” was almost always lower in mutant CRN strain than in parent CRY strain. Using linear correlation analysis and factor analysis with the method of principal component, it was established that the “dancing bodies” index in both strains had significant correlation coefficients with exopolyphosphatase activity (EPPA) and the content of polyphosphate fractions (polyP). The difference was that this index in parent strain correlated better with the first three fractions of inorganic polyphosphates, while in mutant strain – with polyP4 and EPPA. Conclusions. Obtained data indicated the direct connection of motion of volutin granules with phosphoric metabolism in the studied conditions. It is assumed that the phenomenon of “dancing bodies” may be a consequence of the activity of vacuolar polyphosphatases.

Keywords: yeasts, inorganic polyphosphates, exopolyphosphatases, “dancing bodies”, volutin granules.

Full text (PDF, in English)

  1. Kulaev IS, Vagabov VM, Kulakovskaya TV. [High-molecular-weight inorganic polyphosphates: biochemistry, cell biology, and biotechnology]. Moscow: Nauchnyi Mir; 2005. Russian.
  2. Tarayre C, Nguyen H-T, Brognaux A, Delepierre A, De Clercq L, Charlier R, Michels E, Meers E, Delvigne F. Characterization of phosphate accumulation organisms and techniques for polyphosphate detection: a review. Sensors. 2016; 16(6):797–811. https://doi.org/10.3390/s16060797
  3. Kulaev IS. [Biochemistry of high molecular weight polyphosphates]. Moscow: Moscow State University; 1975. Russian.
  4. Allan RA, Miller JJ. Influence of S-adenosylmethionine on DAPI-induced fluorescence of polyphosphate in the yeast vacuole. Can J Microbiol. 1980; 26(8):912–920. https://doi.org/10.1139/m80-158
  5. Lindegren CC. The origin of volutin on the chromosomes, its transfer to the nucleolus, and suggestions concerning the significance of this phenomenon. Proc Natl Acad Sci USA. 1948; 34(5):187–193. https://doi.org/10.1073/pnas.34.5.187
  6. Townsend GF, Lindegren CC. Structures in the yeast cell revealed in a wet mount. Cytologia. 1953; 18(3):183–201. https://doi.org/10.1508/cytologia.18.183
  7. Aswathanarayana NV. The behavior of the vacuole on stimulation of yeast cells with fresh media. Proceedings of the Indian Academy of Sciences – Section B. 1958; 47(4): 225–232.
  8. Thyagarajan TR. The reaction of living vegetable cells and zygotes of Saccharomyces carlsbergensis to neutral red. J Indian Instit Sci. 1958; 40(2):41–49.
  9. Barnett JA, Robinow CF. A history of research on yeasts 4: cytology part I, 1890–1950. Yeast. 2002; 19(2):151–82. https://doi.org/10.1002/yea.813
  10. Puchkov EO. Brownian motion of polyphosphate complexes in yeast vacuoles: characterization by fluorescence microscopy with image analysis. Yeast. 2010; 27(6):309–315. https://doi.org/10.1002/yea.1754
  11. Aswathanarayana NV. The vacuole in yeast. Proceedings of the Indian Academy of Sciences – Section B. 1956; 43(6):314–324. https://doi.org/10.1007/BF03052743
  12. Emrick D, Ravichandran A, Gosai J, Gordon DM, Smith L The antifungal occidiofungin triggers an apoptotic mechanism of cell death in yeast. J Nat Prod. 2013; 76(5):829–838. https://doi.org/10.1021/np300678e
  13. Naito Y, Toh-e A, Hamaguchi H. In vivo time-resolved Raman imaging of a spontaneous death process of a single budding yeast cell. J Raman Spectrosc. 2005; 36(9):837–839. https://doi.org/10.1002/jrs.1397
  14. Kharchuk MS, Glushenkov AN, Gromozova EN. Analysis of the motion of vacuolar volutin granules in Saccharomyces cerevisiae. Folia Microbiol. 2019; 64(2):207–213. https://doi.org/10.1007/s12223-018-0646-8
  15. Kharchuk MS, Grigoriev PE, Kachur TL, Gromozova EN. [Properties of Saccharomyces cerevisiae volutin granules under conditions of the change of space weather]. Mikrobiol Z. 2016; 78(4):71–81. Russian. https://doi.org/10.15407/microbiolj78.04.071
  16. Kharchuk MS, Gromozova EN. [The connection of volutin granules motion of Saccharomyces cerevisiae with exopolyphosphatase activity under stress conditions]. Mikrobiol Z. 2018; 80(4):55–68. Russian. https://doi.org/10.15407/microbiolj80.04.055
  17. Sethuraman A, Rao NN, Kornberg A. The endopolyphosphatase gene: essential in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2001; 98(15):8542–8547. https://doi.org/10.1073/pnas.151269398
  18. Wurst H, Shiba T, Kornberg A. The gene for a major exopolyphosphatase of Saccharomyces cerevisiae. J Bacteriol. 1995; 177(4):898–906. https://doi.org/10.1128/jb.177.4.898-906.1995
  19. Pestov NA, Kulakovskaya TV, Kulaev IS. Effects of inactivation of the PPN1 gene on exopolyphosphatases and function of mitochondria in the yeast Saccharomyces cerevisiae. FEMS  Yeast Res. 2005; 5(9):823–828. https://doi.org/10.1016/j.femsyr.2005.03.002
  20. Liss E, Langen P. Versuche zur polyphosphat-überkompensation in hefezellen nach phosphatverarmung. Arch Microbiol. 1962; 41(4):383–392. https://doi.org/10.1007/BF00422195
  21. Kulaev IS, Krasheninnikov IA, Kokurina NK. [On the localization of inorganic polyphosphates and nucleotides in Neurospora crassa mycelium]. Biokhimiia. 1966; 31(4):850–859. Russian.
  22. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  23. Kulakovskaya TV, Trilisenko LV, Lichko LP, Vagabov VM, Kulaev IS. The effect of inactivation of the exo-and endopolyphosphatase genes PPX1 and PPN1 on the level of different polyphosphates in the yeast Saccharomyces cerevisiae. Microbiology. 2006; 75(1):25–28. https://doi.org/10.1134/S002626170601005X
  24. Hase E, Miyachi S, Mihara S. A preliminary note on the phosphorus compounds in chloroplasts and volutin granules isolated from Chlorella cells. In: Tamiya H, editor. Microalgae and Photosyntetic Bacteria. Tokyo: University of Tokyo Press; 1963. p. 619–626.
  25. Friedberg I, Avigad G. Structure containing polyphosphate in Micrococcus lysodeikticus. J Bacteriol. 1968; 96(2):544–553. https://doi.org/10.1128/jb.96.2.544-553.1968
  26. Kulaev IS, Vagabov VM. Polyphosphate metabolism in microorganisms. Adv Microb Physiol. 1983; 24:83–171. https://doi.org/10.1016/S0065-2911(08)60385-9
  27. Lichko LP, Kulakovskaya TV, Kulaev IS. Inorganic polyphosphates and exopolyphosphatases in different cell compartments of Saccharomyces cerevisiae. Biochemistry (Mosc). 2006; 71(11):1171–1175. https://doi.org/10.1134/S0006297906110010
  28. Lorenz B, Münkner J, Oliveira MP, Kuusksalu A, Leitão JM, Müller WEG, Schröder HC. Changes in the metabolism of inorganic polyphosphate in rat tissues and human cells during development and apoptosis. Biochim Biophys Acta. 1997; 1335(1–2):51–60. https://doi.org/10.1016/S0304-4165(96)00121-3
  29. Imsiecke G, Münkner J, Lorenz B, Bachinski N, Müller WEG, Schröder HC. Inorganic polyphosphates in the developing freshwater sponge Ephydatia muelleri: Effect of stress by polluted waters. Environ Toxicol Chem. 1996; 15(8):1329–1334. https://doi.org/10.1002/etc.5620150811
  30. Pilatus U, Mayer A, Hildebrandt A. Nuclear polyphosphate as a possible source of energy during the sporulation of Physarum polycephalum. Arch Biochem Biophys. 1989; 275(1):215–223. https://doi.org/10.1016/0003-9861(89)90366-4
  31. Ramos I, Gomes F, Koeller CM, Saito K, Heise N, Masuda H, Docampo R, de Souza W, Machado EA, Miranda K. Acidocalcisomes as calcium- and polyphosphate-storage compartments during embryogenesis of the insect Rhodnius prolixus Stahl. PLoS One. 2011; 6(11):e27276. https://doi.org/10.1371/journal.pone.0027276
  32. Vagabov VM, Trilisenko LV, Shchipanova IN, Sibel’dina LA, Kulaev IS. [Change in inorganic polyphosphate chain length depending on the stage of Saccharomyces cerevisiae growth]. Mikrobiologiia. 1998; 67(2):188–193. Russian.
  33. Kulakovskaya TV, Andreeva NA, Trilisenko LV, Suetin SV, Vagabov VM, Kulaev IS. Accumulation of polyphosphates and expression of high molecular weight exopolyphosphatase in the yeast Saccharomyces cerevisiae. Biochemistry (Mosc). 2005; 70(9):980–985. https://doi.org/10.1007/s10541-005-0212-2
  34. Vagabov VM, Trilisenko LV, Kulakovskaya TV, Kulaev IS. Effect of a carbon source on polyphosphate accumulation in Saccharomyces cerevisiae. FEMS Yeast Res. 2008; 8(6):877–882. https://doi.org/10.1111/j.1567-1364.2008.00420.x
  35. Hothorn M, Neumann H, Lenherr ED, Wehner M, Rybin V, Hassa PO, Uttenweiler A, Reinhardt M, Schmidt A, Seiler J, Ladurner AG, Herrmann C, Scheffzek K, Mayer A. Catalytic core of a membrane-associated eukaryotic polyphosphate polymerase. Science. 2009; 324(5926):513–516. https://doi.org/10.1126/science.1168120
  36. Gerasimaitė R, Mayer A. Ppn2, a novel Zn2+-dependent polyphosphatase in the acidocalcisome-like yeast vacuole. J Cell Sci. 2017; 130(9):1625–1636. https://doi.org/10.1242/jcs.201061
  37. Lonetti A, Szijgyarto Z, Bosch D, Loss O, Azevedo C, Saiardi A. Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. J Biol Chem. 2011; 286(37):31966–31974. https://doi.org/10.1074/jbc.M111.266320
  38. Lichko LP, Kulakovskaya TV, Kulaev IS. Inactivation of endopolyphosphatase gene PPN1 results in inhibition of expression of exopolyphosphatase PPX1 and high-molecular-mass exopolyphosphatase not encoded by PPX1 in Saccharomyces cerevisiae. Biochim Biophys Acta. 2004; 1674(1):98–102. https://doi.org/10.1016/j.bbagen.2004.06.004
  39. Gerasimaitė R, Sharma S, Desfougeres Y, Schmidt A, Mayer A. Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. J Cell Sci. 2014; 127(Pt 23):5093–5104. https://doi.org/10.1242/jcs.159772
  40. Desfougères Y, Gerasimaitė RU, Jessen HJ, Mayer A. Vtc5, a novel subunit of the vacuolar transporter chaperone complex, regulates polyphosphate synthesis and phosphate homeostasis in yeast. J Biol Chem. 2016; 291(42): 22262–22275. https://doi.org/10.1074/jbc.M116.746784