Mikrobiol. Z. 2021; 83(3):3-13.
doi: https://doi.org/10.15407/microbiolj83.03.003

Polyphase Taxonomy of Antarctic Bacteria

G.V. Gladka, N.V. Borzova, O.V. Gudzenko, V.M. Hovorukha,
О.А. Havryliuk, О.B. Tashyrev

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

The phylogenetic structure of bacteria is not always consistent with the traditional classification scheme based on the phenotypic properties of bacteria. That is one of the problems of modern bacterial taxonomy. In addition, traditional methods to identify bacteria using phenotypic properties have a number of disadvantages. In recent decades, significant progress was achieved in the investigation of microbial world using molecular methods for fast identification. The aim of the study was to clarify the species status of four strains of bacteria isolated from black lichens of the cliffs of Galindez Island in the Antarctic on the basis of phenotypic and genetic analysis. Methods. Morphological and cultural properties of bacteria were studied according to generally accepted microbiological methods. Physiological and biochemical ones were investigated using test systems API Coryne and API 20E (bioMerieux SA, France), according to the manufacturer’s instructions. Phylogenetic analysis was performed based on the nucleotide sequences of the 16S rRNA gene. To identify closely related species, a comparative analysis of the nucleotide sequences of 16S rRNA genes was performed using the BLAST software package. The phylogenetic position was determined by constructing trees (dendrograms) to show the position of the studied strains among closely related and typical species (programs ClustalX 2.1, Mega 6.06). The tree was constructed applying ClustalX 2.1 by comparing the nearest neighbors with bootstrap analysis (bootstrap NJ tree) using 1000 bootstrap tests (1000 alternative trees). Then the phylogenetic tree was edited by the program Mega v. 6.00. Results. Based on the results of comparative, phylogenetic and phenotypic analysis, the studied Antarctic strains 180n1, 181n2, 188n2, 190n2 were identified as Pseudomonas fluorescens, Microbacterium foliorum, Sporosarcina aquimarina and Rothia sp., respectively. The coefficient of similarity of 16S rRNA genes of strain 180n1 with such a closely related species from the database P. fluorescens NBRC 14160 was 99.5%; 181n2 with M. foliorum P 333/02 – 99.4%; 188n2 with S. aquimarina SW28 – 99.7%. These strains form common clusters with closely related species on phylogenetic dendrograms. The strain 190n2 can be considered as Rothia sp., since has the remote position from closely related strains in the cluster Rothia and a low percentage of similarity (97.3%) with the species Rothia endophytica YIM 67072. These strains belong to the phyla: Firmicutes, Actinobacteria, Proteobacteria. Conclusions. Phylogenetic and phenotypic analyzes allowed determining the taxonomic position of isolated aerobic chemoorganotrophic microbial strains of the Antarctic. Nucleotide sequences of 16S rRNA genes are deposited in the International GenBank database under numbers HG518622, HG518623, HG518625, HG518626.

Keywords: Antarctic, identification, рhylogenetic analysis, comparative analysis, phenotypic analysis, 16S rRNA, closely related species.

Full text (PDF, in English)

  1. [Bergey’s guide to bacteria]. 9th edition: trans. from English. Eds: GA Zavarzin. Moscow: Mir; 1997. Russian.
  2. Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol. 2007; 9(11):2670–2682. https://doi.org/10.1111/j.1462-2920.2007.01379.x
  3. Ivshina IB, Krivoruchko AV, Kuyukina MS. [Biodiversity and taxonomy of microorganisms: study guide]. Perm. state nat. res. un-t; 2019. Russian.
  4. Kimura M. [Molecular Evolution: Theory of Stability]. Moscow: Mir; 1985. Russian.
  5. Bergey’s Manual of Systematic Bacteriology. The Firmicutes. Eds: Paul De Vos, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB. 2nd ed., V. 3. New York: Springer SBM; 2009.
  6. Bergey’s Manual of Systematic Bacteriology. The Proteobacteria. Parts A, B, C. Eds: Brenner DJ, Krieg NR, Staley JT. Editor-in-chief Garrity GM. 2nd ed., V.2. New York: Springer SBM; 2005.
  7. Fan JF, Li LL, Han JL, et al. Diversity and structure of bacterial communities in Fildes Peninsula, King George Island. Pol Biol. 2013; 36:1385–1399. https://doi.org/10.1007/s00300-013-1358-9
  8. Rinnan R, Rousk J, Yergeau E, Kowalchuk GA, Baath E. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming. Glob Change Biol. 2009; 15:2615–2625. https://doi.org/10.1111/j.1365-2486.2009.01959.x
  9. Zdanowski MK, Zmuda-Baranowska MJ, Borsuk P, Swiatechi A, Gornik D, et al. Culturable bacteria community development in postglacial soils of Ecology Glacier, King George Island, Antarctica. Polar Biol. 2013; 36:511–527. https://doi.org/10.1007/s00300-012-1278-0
  10. Vishniac HS. Yeast biodiversity in the Antarctic. Biodiversity and ecophysiology of yeasts. Eds: Rosa CA, Péter G. Berlin: Springer-Verlag, 2006; 221–240.
  11. Lee CK, Barbier BA, Bottos EM, McDonald IR, Cary SC. The inter-valley soil comparative survey: the ecology of Dry Valley edaphic microbial communities. ISME J. 2012; 6(5):1046–1057. https://doi.org/10.1038/ismej.2011.170
  12. Makhalanyane TP, Van Goethem MW, Cowan DA. Microbial diversity and functional capacity in polar soils. Curr Opin Biotech. 2016; 38:159–166. https://doi.org/10.1016/j.copbio.2016.01.011
  13. Lee L-H, Cheah Y-K, Nurul Syakima AM, Shiran MS, Tang Y-L, Lin H-P, Hong K. Analysis of Antarctic proteobacteria by PCR fingerprinting and screening for antimicrobial secondary metabolites. Genet Mol Res. 2012; 11(2):1627–1641. https://doi.org/10.4238/2012.June.15.12
  14. Huang Y, Wei Z, Danzeng W, et al. Sphingomonas antarctica sp. nov., isolated from Antarctic tundra soil. Int J Syst Evol Microbiol. 2017; 67(10):4064–4068. https://doi.org/10.1099/ijsem.0.002253
  15. Belova SE, Suzina NE, Rijpstra WI, Sinninghe Damste JS, Dedysh SN. Edaphobacter lichenicola sp. nov., a member of the family Acidobacteriaceae from lichen-dominated forested tundra. Int J Syst Evol Microbiol. 2018; 68(4):1265-1270. https://doi.org/10.1099/ijsem.0.002663
  16. Jiang F, Xiao M, Chen L, et al. Huanghella arctica gen. nov., sp. nov., a bacterium of the family Cytophagaceae isolated from Arctic tundra soil. Int J Syst Evol Microbiol. 2013; 63(2):696–702. https://doi.org/10.1099/ijs.0.041533-0
  17. Zou R, Zhang Y, Zhou X, Wang Y, Peng F. Spirosoma flavum sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol. 2017; 67(12):4911–4916. https://doi.org/10.1099/ijsem.0.002238
  18. Silva TR, Duarte AWF, Passarini MRZ, Ruiz ALTG, Franco CH, et al. Bacteria from Antarctic environments: Diversity and detection of antimicrobial, antiproliferative and antiparasitic activities. Polar Biol. 2018; 41:1505–1519. https://doi.org/10.1007/s00300-018-2300-y
  19. Pearce DA, Newsham KK, Thorne MAS, Calvo-Bado L, Krsek M. Metagenomic Analysis of a Southern Maritime Antarctic Soil. Front Microbiol. 2012; 3. https://doi.org/10.3389/fmicb.2012.00403
  20. Tomova I, Lazarkevich I, Tomova A, Kambourova M, Vasileva-Tonkova E. Diversity and biosynthetic potential of culturable aerobic heterotrophic bacteria isolated from Magura Cave, Bulgaria. Int J Speleol. 2013; 42(1):65–76. https://doi.org/10.5038/1827-806X.42.1.8
  21. Vasileva-Tonkova E, Romanovskaya V, Gladka G, Gouliamova D, Tomova I, Stoilova-Disheva M, et al. Ecophysiological properties of cultivable heterotrophic bacteria and yeasts dominating in phytocenoses of Galindez Island, maritime Antarctica. WIBI. 2014; 30(4):1387–1398. https://doi.org/10.1007/s11274-013-1555-2
  22. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991; 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991
  23. Kipgen TL, BoraInt LC. Biochemical Differentiation of Pseudomonas fluorescens of Assam Soil and their Utility in Management of Bacterial Wilt of Solanaceous Crops. J Curr Microbiol App Sci. 2017; 6(6):2796–2806. https://doi.org/10.20546/ijcmas.2017.606.333
  24. Behrendt U, Ulrich A, Schumann P. Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward and reclassification of Aureobacterium resistens as Microbacterium resistens comb. nov. Int J Syst Evol Microbiol. 2001; 51:1267–1276. https://doi.org/10.1099/00207713-51-4-1267
  25. Yoon J-H, Lee K-C, Weiss N, Kho YH, Kang KH, Park Y-H. Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina. Int J Syst Evol Microbiol. 2001; 51:1079–1086. https://doi.org/10.1099/00207713-51-3-1079
  26. Bergey’s Manual of Systematic Bacteriology. Second edition, Volume five. The Actinobacteria, Part A. Goodfellow M, Kampfer P, Busse H-J, Trujillo ME, Suzuki K, Ludwig W, Whitman WB. New York: Springer; 2012.
  27. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Huang X, et al. Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory Mir. Int J Syst Evol Microbiol. 2004; 54:827–835. https://doi.org/10.1099/ijs.0.02828-0
  28. Current protocols in molecular biology. Eds: Ausubell F, et al. New York: John Wiley & Sons; 1987.
  29. Murray RGE, Brenner DJ, Colwell RR, Vos P, Goodfellow M, et al. Report of the ad Hoc Committee on approaches to taxonomy within the Proteobacteria. Int J Syst Bacteriol. 1990; 40(2):213–215. https://doi.org/10.1099/00207713-40-2-213
  30. Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol. 2007; 9(11):2670–2682. https://doi.org/10.1111/j.1462-2920.2007.01379.x
  31. Spain AM, Krumholz LR, Elshahed MS. Abundance, composition, diversity and novelty of soil proteobacteria. ISME J. 2009; 3:992–1000. https://doi.org/10.1038/ismej.2009.43
  32. Tropeano M, Coria S, Turjanski A, Cicero D, Bercovich A, Cormack WM, Vazquez S. Culturable heterotrophic bacteria from Potter Cove, Antarctic and their hydrolytic enzymes production.  Polar Res. 2012; 31:18507. https://doi.org/10.3402/polar.v31i0.18507
  33. Kersters K, Devos P, Gillis M, Swings J, Vandamme P, Stackebrandt E. Introduction to the Proteobacteria. In: Dworkin M. et al, editors. The Prokaryotes: A Handbook on the biology of bacteria. New York: Springer; 2006. p. 3–37. https://doi.org/10.1007/0-387-30745-1_1
  34. Goordial J, Davila A, Greer CW, Cannam R, Di-Ruggiero J, McKay CP, et al. Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert. Environ Microbiol. 2017; 19(2):443-458. https://doi.org/10.1111/1462-2920.13353
  35. Willerslev E, Hansen AJ, Ronn R, Brand TB, Barnes I, Wiuf C, et al. Long-term persistence of bacterial DNA. Curr Biol. 2004; 14(1): R9–R10. https://doi.org/10.1016/j.cub.2003.12.012
  36. Roohi, Kuddus M, Ahmad IZ, Arif JM. Production of Cold-active Extracellular α-Amylase by Newly Isolated Microbacterium foliorum GA2 from Gangotri glacier, Western Himalaya, India. Asian J Biotechnol. 2011; 3(5):449–459. https://doi.org/10.3923/ajbkr.2011.449.459
  37. Teixeira LC, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J. 2010; 4(8):989–1001. https://doi.org/10.1038/ismej.2010.35