Mikrobiol. Z. 2020; 82(6):94-106. Ukrainian.
doi: https://doi.org/10.15407/microbiolj82.06.094

Weeds as Reservoirs of Viruses in Agrobiocenoses of Legumes in Ukraine

A.N. Kyrychenko, M.M. Bohdan, I.S. Shcherbatenko

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

This paper is the review of literature data on the prevalence of weeds as possible reservoirs of plant viruses in agroecosystems of Ukraine. The information presented here about the most distributed weeds as reservoirs of harmful plant viruses will be useful for understanding the pathogens ecology, analyzing the virus epidemiology and for disease management. Since legumes are the main crops grown in Ukraine, the paper focuses on weeds spreading in the agrosystems of cultivated plant. The paper provides information about the primary sources of soybean viruses (Soybean mosaic virus, Cucumber mosaic virus, Alfalfa mosaic virus, Tomato ringspot virus) and bean viruses (Bean yellow mosaic virus, Bean common mosaic virus) as well as the main factors contributing the virus transmission in agrocenosis.

Keywords: plant viruses, weeds as reservoirs of harmful plant viruses, sources of virus pathogens, vectors of legume viruses.

Full text (PDF, in Ukrainian)

  1. Agrios GN. Plant Pathology. Academic Press; 2005.
  2. Allen TC, McMorran JP, Locatelli EA. Isolation of tomato spotted wilt virus from hydrangea and four weed species. Plant Dis. 1983; 67(4):429-31. https://doi.org/10.1094/PD-67-429
  3. Almeida AMR, Sakai J, Souto ER, Kitajima EW, Fukuji TS and Hanada K. Mosaic in Senna occidentalis in Southern Brazil induced by a new strain of Soybean mosaic virus. Fitopatol. Bras. 2002; 27:151-56. https://doi.org/10.1590/S0100-41582002000200005
  4. Al-Shahwan OA, Abdalla MA, Al-Saleh MA. Amer Detection of new viruses in alfalfa, weeds and cultivated plants growing adjacent to alfalfa fields in Saudi Arabia Saudi J Biol Sci. 2017; 24(6):1336-43. https://doi.org/10.1016/j.sjbs.2016.02.022
  5. Anfoka G, Altaleb M, Haj F, Mohammad A, Obaida A. Charlock mustard (Sinapis arvensis): a weed reservoir for begomoviruses and associated betasatellite in Jordan. Can J Plant Pathol. 2017; 39(3):325-33. https://doi.org/10.1080/07060661.2017.1354332
  6. Arli-Sokmen M, Mennan H, Sevik MA, Ecevit O. Occurrence of viruses in field-grown pepper crops and some of their reservoir weed hosts in Samsun. Phytoparasitica. 2005; 33:347-58. https://doi.org/10.1007/BF02981301
  7. Arogundade O, Balogun OS, Sholaku O, Aliyu TH. Influence of Cowpea mottle virus and Cucumber mosaic virus on the growth and yield of six lines of soybean (Glycine max L.). J Agric Sci. 2010; 2(1):72-8. https://doi.org/10.5539/jas.v2n1p72
  8. Atabekov JG. Host specificity of plant viruses. Annu Rev Phytopathol. 1975; 13:127-45. https://doi.org/10.1146/annurev.py.13.090175.001015
  9. Baker CA, Breman L, Jones L. Alternanthera mosaic virus found in Scutellaria, Crossandra, and Portulaca in Florida. Plant Dis. 2006; 90(6):833. https://doi.org/10.1094/PD-90-0833C
  10. Bazhyna NO. [Osoblyvosti zaburianennia posiviv kvasoli zvychainoi ta efektyvnist kontroliuvannia burianiv herbitsydamy kombinovanoi dii]. Tsukrovi buriaky 2015; 6:16-8. Ukrainian.
  11. Behncken GM. Some properties of a virus from Galinsoga patviilora, Aust J Biol Sci. 1970; 23:497. https://doi.org/10.1071/BI9700497
  12. Benscher D, Pappu SS, Niblett CL, Varon de Agudelo V, Morales F, Hodson E, Alvarez E, Acosta O., Lee RF. A strain of soybean mosaic virus infecting Passiflora spp. in Colombia. Plant Dis. 1996; 80:258-62. https://doi.org/10.1094/PD-80-0258
  13. Berbenets OV. [World-wide production of soya as an inexhaustible source of vegetable proteins and Ukraine's place in the global trading market]. Agrosvit. 2019; 10:41-45. Ukrainian. https://doi.org/10.32702/2306-6792.2019.10.41
  14. [Biologicheskiye resursy Dalnego Vostoka Rossii: kompleksnyy regionalnyy proyekt DVO RAN]. Kollektiv avtorov. Redaktor Yu. Zhuravlev. Vidavets Litres. 2018. Russian.
  15. Bol JF. Alfalfa mosaic virus: coat protein-dependent initiation of infection. Mol Plant Pathol. 2003; 4:1-8. https://doi.org/10.1046/j.1364-3703.2003.00146.x
  16. Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L. In: Zurcher EJ, editor. Plant viruses. 2003. http://image.fs.uidaho.edu/vide/refs.htm
  17. CABI. Invasive Species Compendium, www.cabi.org/isc [2016, May 30].
  18. CABI. Invasive Species Compendium, www.cabi.org/isc [2019, November 25]. https://www.cabi.org/isc/datasheet/15101
  19. Chalupníková J, Kundu JK, Singh K, Bartaková P, Beoni E. Wheat streak mosaic virus: incidence in field crops, potential reservoir within grass species and uptake in winter wheat cultivars. J Integr Agric. 2017; 16(3):523-31. https://doi.org/10.1016/S2095-3119(16)61486-7
  20. Chaudhary P, Kumari R, Singh B, Hallan V, Nagpal AK. First report of potato virus M, potato virus Y and cucumber mosaic virus infection in Solanum nigrum in India. J Plant Pathol. 2019; 101:419. https://doi.org/10.1007/s42161-018-0194-8
  21. Chen J, Zhang H-Y, Lin L, Adams MJ, Antoniw JF, Zhao M-F, Shang Y-F, Chen J-P. A virus related to Soybean mosaic virus from Pinellia ternata in China and its comparison with local soybean SMV isolates. Arch Virol. 2004; 149:349-63. https://doi.org/10.1007/s00705-003-0184-8
  22. Ciuffo M, Tavella L, Pacifico D, Masenga V, Turina M. A member of a new Tospovirus species isolated in Italy from wild buckwheat (Polygonum convolvulus). Arch Virol. 2008; 153(11):2059-68. https://doi.org/10.1007/s00705-008-0228-1
  23. Conti M, Caciagli P, Casetta A. Infection sources and aphid vectors in relation to the spread of cucumber mosaic virus in pepper crops. Phytopathol Mediterr. 1979; 18:123-28.
  24. Cooper I, Jones R. Wild plants and viruses: under-investigated ecosystems. Adv Virus Res. 2006; 67:1-47. https://doi.org/10.1016/S0065-3527(06)67001-2
  25. Cooper JI, Harrison BD. The role of weed hosts and the distribution and activity of vector nematodes in the ecology of tobacco rattle virus. Ann Appl Biol. 1973; 73:53-66. https://doi.org/10.1111/j.1744-7348.1973.tb01309.x
  26. Coutts BA, Jones RAC. Potato Virus Y: Contact Transmission, Stability, Inactivation and Infection Sources. Plant Dis. 2015; 99:387-94. https://doi.org/10.1094/PDIS-07-14-0674-RE
  27. Crill P, Hagedorn DJ, Hanson EW. Alfalfa mosaic, the disease and its virus incitant: a literature review. Univ Wisc Agric Exp Stn Res Bull; 1970.
  28. D'Arcy CJ, De Zoeten GA. Beet Western Yellows Virus in Phloem Tissue of Thlaspi arvense. Phytopathology. 1979; 69(11):1194-98. https://doi.org/10.1094/Phyto-69-1194
  29. Dikova B. Sinapis arvensis L. as a source of viruses - Cauliflower mosaic virus (CaMV) and Turnip mosaic virus (TuMV) infecting oilseed rape. Acta Phytopathol Entomol Hung. 2008; 43(1):93-9. https://doi.org/10.1556/APhyt.43.2008.1.11
  30. Dikova B. Wild-growing hosts of the cucumber mosaic virus. Rasteniev'dni Nauki. 1989; 26(7):57-64.
  31. Dinesh-Kumar SP, Brault V, Miller WA. Precise mapping and in vitro translation of a bifunctional subgenomic RNA of barley yellow dwarf virus. Virology. 1992; 187:711-22. https://doi.org/10.1016/0042-6822(92)90474-4
  32. Dodds JA, Taylor GS. Cucumber mosaic virus infection of tobacco transplants and purslane (Portulaca oleracea). Plant Dis. 1980; 64(3):294-96. https://doi.org/10.1094/PD-64-294
  33. Domier LL, Latorre IJ, Steinlage TA, McCoppin N, Hartman GL. Variability and transmission by Aphis glycines of North American and Asian oybean mosaic virus isolates. Arch. Virol. 2003; 148:1925-41. https://doi.org/10.1007/s00705-003-0147-0
  34. Dragoljub DS, Richard EF, Malisa TT. Handbook of Plant Virus Diseases. CRC Press; 1999.
  35. Edwardson JR, Christie RG. CRC Handbook of Viruses Infecting Legumes. CRC Press; 1991.
  36. EPPO https://www.eppo.int/ACTIVITIES/plant_quarantine/alert_list_viruses/tomato_brown_rugose_fruit_virus 2019.
  37. Eskarous JK, Habib HM, Kishtah AA, Ismail MH. A strain of Potato virus Y isolated from Solanum nigrum var. judaicum in Egypt. Phytopathol Mediterr. 1983; 22(1/2):53-8.
  38. Evans CK, Bag S, Frank E, Reeve J, Ransom C, Drost D, Pappu HR. Green Foxtail (Setaria viridis), a naturally infected grass host of iris yellow spot virus in Utah. Plant Dis. 2009; 93(6):670-71. https://doi.org/10.1094/PDIS-93-6-0670C
  39. Fereres A. Barrier crops as a cultural control measure of non-persistently transmitted aphid-borne viruses. Virus Research. 2000; 71(1-2):221-231. https://doi.org/10.1016/S0168-1702(00)00200-8
  40. Fiallo-Olivé E, Navas-Castillo J. Tomato chlorosis virus, an emergent plant virus still expanding its geographical and host ranges. Mol Plant Pathol. 2019; 20:1307-20. https://doi.org/10.1111/mpp.12847
  41. Fletcher JD. New hosts of Alfalfa mosaic virus, Cucumber mosaic virus, Potato virus Y, Soybean dwarf virus, and Tomato spotted wilt virus in New Zealand. N.Z. J Crop Hortic Sci. 2001; 29:213-17. https://doi.org/10.1080/01140671.2001.9514180
  42. Ghodoum Parizipour MH, Behjatnia SAA, Afsharifar A, Izadpanah K. Natural hosts and efficiency of leafhopper vector in transmission of wheat dwarf virus. J Plant Pathol. 2016; 98(3):483-92.
  43. Goodman RM, Bowers GR, Paschal EH. Identification of soybean germplasm lines and cultivars with low incidence of soybean mosaic virus transmission through seed. Crop Sci. 1979; 19:264-67. https://doi.org/10.2135/cropsci1979.0011183X001900020023x
  44. Goodman RM, Oard JH. Seed transmission and yield losses in tropical soybeans infected by soybean mosaic virus. Plant Dis. 1980; 64:913-14. https://doi.org/10.1094/PD-64-913
  45. Hervé Lapierre, Pierre-A. Signoret. Viruses and Virus Diseases of Poaceae (Gramineae). Editions Quae; 2004.
  46. Hill JH, Lucas BS, Benner HI, Tachibana H, Hammond RB, Pedigo LP. Factors associated with the epidemiology of soybean mosaic virus in Iowa. Phytopathology. 1980; 70:536-40. https://doi.org/10.1094/Phyto-70-536
  47. Hill JH. Soybean mosaic virus. In: Hartman GL, Sinclair JB, Ruge JC, Compendium of soybean diseases. American Phytopathological Society, St. Paul, MN. 1999:70-71.
  48. Holm LG, Plucknett DL, Pancho JV, Herberger JP. The World's Worst Weeds. Distribution and Biology. Honolulu, Hawaii, USA: University Press of Hawaii; 1977.
  49. Hong JS, Masuta C, Nakano M, Abe J, Uyeda I. Adaptation of Cucumber mosaic virus soybean strains (SSVs) to cultivated and wild soybeans. Theor Appl Genet. 2003; 107:49-53. https://doi.org/10.1007/s00122-003-1222-3
  50. Hosseinzadeh H, Nasrollanejad S, Khateri H. First report of cucumber mosaic virus subgroups i and ii on soybean, pea, and eggplant in Iran. Acta Virol. 2012; 56(2):145-8. https://doi.org/10.4149/av_2012_02_145
  51. Hume L, Martinez J, Best K. The biology of Canadian weeds. 60. Polygonum convolvulus L. Can J Plant Sci. 1983; 63:959-71. https://doi.org/10.4141/cjps83-121
  52. Ilbagi H, Citir A, Kara A, Uysal M. Poaceae Weed Hosts of Yellow dwarf viruses (YDVs) in the Trakya Region of Turkey. Ekin Journal of Crop Breeding and Genetics. 2018; 4(2):8-19.
  53. Jaspars EM, Bos L. Alfalfa mosaic virus. No. 229. In: Descriptions of Plant Viruses. Commonwealth Mycological Institute, Association of Applied Biologists; 1980.
  54. Jerković-Mujkić A, Bešta R, Smajević A. Transmission of tobacco rattle virus by Saponaria officinalis L. seeds. XXI Naučno-stručna konferencija poljoprivrede i prehrambene industrije. Zbornik radova, 2010 Sep 29 - Okt 2 Neum, Bosnia i Hercegovina, 2010. p. 237-42.
  55. Jones RAC, McKirdy SJ, Shivas RG. Occurrence of barley yellow dwarf viruses in over-summering grasses and cereal crops in Western Australia. Australas Plant Pathol. 1990; 19(3):90-96. https://doi.org/10.1071/APP9900090
  56. Jordá C, Pérez AL, Martínez Culebras PV, Lacasa A. First Report of Pepino mosaic virus on Natural Hosts. Plant Dis. 2001; 85(12):1292. https://doi.org/10.1094/PDIS.2001.85.12.1292D
  57. Kaiser WJ, Hannan RM. Alfalfa mosaic. In: Compendium of Bean Diseases, 2nd ed. HF Schwartz, JR Steadman, R Hall, RL Forster, editors. American Phytopathological Society, St. Paul, MN. 2005; 58-59.
  58. Kakareka NN, Kozlovskaya ZN, Volkov YuG, Pleshakova TI, Sapotskiy MV, Shchelkanov MYu. [Nepovirusy (Picornavirales. Secoviridae. Nepovirus) na yuge Dalnego Vostoka: rezultaty mnogoletnego monitoringa. Yug Rossii: ekologiya. Razvitiye]. South of Russia: Ecology, Development. 2017; 12(4):105-19. Russian. https://doi.org/10.18470/1992-1098-2017-4-105-119
  59. Kazinczi G, Horvath J, Takacs A, Gaborjanyi R, Beres I. Experimental and natural weed host-virus relations. Commun Agric Appl Biol Sci. 2004; 69(3):53-60.
  60. Kazinczi G, Lukacs D, Takacs A, Horvath J, Gaborjanyi R, Nadasy M, et al. Biological decline of Solanum nigrum due to virus infections. J Plant Dis Protect. 2006; 325-30.
  61. Kennedy JS, Booth CO, Kershaw WJS. Host finding by aphids in the field: Gynoparae of Myzus persicae (Sulzer). Ann Appl Biol. 1959; 47:310-423. https://doi.org/10.1111/j.1744-7348.1959.tb07276.x
  62. Koshimizu Y, Iizuka N. Soybean stunt disease. Ann Phytopathol Soc Jpn. 1958; 23:27.
  63. Kumssa TT, Rupp JS, Fellers MC, Fellers JP, Zhang G. An isolate of Wheat streak mosaic virus from foxtail overcomes Wsm2 resistance in wheat. Plant Pathol. 2019; 68(4):783-89. https://doi.org/10.1111/ppa.12989
  64. Kurdiukova OM. Tyshchuk OP. [Desiat naishkidlyvishykh burianiv Ctepiv Ukrainy ta yikh control]. Karantyn i zakhyst Roslyn. 2018; 6/7:8-10. Ukrainian.
  65. Kutluk ND, Erkan S, Bicken S. Weeds as hosts for Rhizomania's agent. Zeitschrift fuumlautr Pflanzenkrankheiten und Pflanzenschutz, Sonderh. 2000; 17:167-71.
  66. Lamptey JNL, Plumb RT, Shaw MW. Interactions between the grasses Phalaris arundinacea, Miscanthus sinensis and Echinochloa crus-galli, and Barley and Cereal yellow dwarf viruses. J Phytopathol. 2003; 151(7-8):463-68. https://doi.org/10.1046/j.1439-0434.2003.00752.x
  67. Lecoq H, Desbiez C. Viruses and Virus Diseases of the Vegetables in the Mediterranean Basin. London: Academic Press, 2012; 84:592.
  68. Legreve A, Schmit JF, Bragard C, Maraite H. The role of climate and alternative hosts in the epidemiology of rhizomania. In: Rush CM, editor. Proceedings of the Sixth Symposium of the International Working Group on Plant Viruses with Fungal Vectors, 2005 Sep 5-7. Bologna, Italy. Zurich, Switzerland: IWGPVFV, 2005. p. 125-28.
  69. Lingenfelter DD, Hartwig NL. Introduction to weeds and herbicides. Produced by Ag Communications and Marketing, The Pennsylvania State University. 2013:4.
  70. Locatelli EA, Allen TC, Koepsell PA, Appleby AP. Diagnosis of tobacco rattle virus (TRV) and other viruses in weed and rotation crops in potato fields. Am Potato J. 1978; 55(5):249-57. https://doi.org/10.1007/BF02852133
  71. Malmstrom CM, Shu R, Linton EW, Newton LA, Cook MA. Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. J Ecol. 2007; 95:1153-66. https://doi.org/10.1111/j.1365-2745.2007.01307.x
  72. Mandadi KK, Pyle JD, Scholthof KB. Comparative analysis of antiviral responses in Brachypodium distachyon and Setaria viridis reveal conserved and unique outcomes among C3 and C4 plant defenses. Mol Plant Microbe Interact. 2014; 27:1277-90. https://doi.org/10.1094/MPMI-05-14-0152-R
  73. Maramorosch K. Plant Diseases and Vectors: Ecology and Epidemiology. Academic Press; 1981.
  74. Mertelik J, Mokra V. Tomato spotted wilt virus in ornamental plants, vegetables and weeds in the Czech Republic. Acta Virologica. 1998; 42(5):347-51.
  75. Mih AM. Germplasm health management: identification, characterization and elimination of viruses. Postdoctoral Associate Terminal Report. Addis Ababa: International Livestock Research Institute; 1996.
  76. Nagaraju V, Muniyappa V, Singh SJ, Virupahshappa K. Occurrrence of a mosaic virus disase on sunflower in Karnataka. Indian Phytopath. 1997; 50:277-81.
  77. Nasser MAK, Basky Zs. Research on some weeds as reservoirs of cucumber mosaic virus. Zoldsegtermesztesi Kutato Intezet Bulletinje. 1988; 21:83-8.
  78. Navas ML, Friess N, Maillet J. Influence of cucumber mosaic virus infection on the growth response of Portulaca oleracea (purslane) and Stellaria media (chickweed) to nitrogen availability. New Phytologist. 1998; 139:301-9. https://doi.org/10.1046/j.1469-8137.1998.00197.x
  79. Orfanidou CG, Dimitriou C, Papayiannis LC, Maliogka VI, Katis NI. Epidemiology and genetic diversity of criniviruses associated with tomato yellows disease in Greece. Virus Res. 2014; 186:120-129. https://doi.org/10.1016/j.virusres.2013.12.013
  80. Os B van, Stancanelli G, Mela L, Lisa V. Role of wild plants and weeds in the epidemiology of tospovirus in Liguria. Inf Fitopatol. 1993; 43(10):40-4.
  81. Paczuski R, Blachowska E. The role of perennial weeds in the transfer of beet yellows virus. Biuletyn Instytutu Hodowli i Aklimatyzacji Roslin. 1992; 183:195-201.
  82. Papayiannis LC, Kokkinos CD, Alfaro-Fernández A. Detection, characterization and host range studies of Pepino mosaic virus in Cyprus. Eur J Plant Pathol. 2012; 132(1):1-7. https://doi.org/10.1007/s10658-011-9854-7
  83. Pochard E. Study of resistance to European strains of potato virus Y (PVY) in Capsicum. In: Pochard E, editor. Capsicum 77. Proceedings of the 3rd Congress of EUCARPIA on genetics and selection of pepper, 1977 July 5-8, Avignon-Montfavet France INRA. 1977. p. 109-18.
  84. Prajapat R, Marwal A, Gaur RK. Evidence of the Association of Solanum leaf curl lakshmangarh virus with a Weed Plant Solanum nigrum in Rajasthan, India. Sci Int. 2013; 11:379-83. https://doi.org/10.17311/sciintl.2013.379.383
  85. Prajapat R, Marwal A, Gaur RK. Begomovirus associated with alternative host weeds: a critical appraisal. Arch Phytopathology Plant Protect. 2014; 47(2):157-70. https://doi.org/10.1080/03235408.2013.805497
  86. Rist DL, Lorbeer JW. Occurrence and overwintering of cucumber mosaic virus and Broad bean wilt virus in weeds growing near commercial lettuce fields in New York. Phytopathology. 1989; 79:65-9. https://doi.org/10.1094/Phyto-79-65
  87. Sedivy EJ, Wu F, Hanzawa Y. Soybean domestication: The origin, genetic architecture and molecular bases. New Phytol. 2017; 214:539-553. https://doi.org/10.1111/nph.14418
  88. Senda M, Masuta C, Ohnishi S, Goto K, Kasai A, Sano T, Hong JS, MacFarlane S. Patterning of virus-infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell. 2004; 16:807-18. https://doi.org/10.1105/tpc.019885
  89. Sharma P, Sharma S, Gautam I, Baranwal VK. Natural infection of Glycine max by seven viruses belonging to different genera in India. J Plant Pathol. 2016; 98(3):569-75.
  90. Sherepitko D, Boiko A, Sherepitko V. [Proiav infektsii ta identyfikatsiia virusu mozaiky liutserny na roslynakh soi (Glycine max (L.) Marril) za hruntovo-klimatychnykh umov Vinnychyny]. Visnyk KNU. Seriia Biolohiia. 2011; 58:9-12. Ukrainian.
  91. Shkalikov VA, Beloshapkina OO, Bukreyev DD. [Zashchita rasteniy ot bolezney]. 2-e izd. ispr. i dop. Moscow: Kolos; 2003. Russian.
  92. Shpaar D, Ordon F, Rabenshteyn F, Khabekus A, Shlipkhake E, Shubert I. Ekonomicheskoye znacheniye, rasprostraneniye i borba s virusami zernovykh i kormovykh zlakov, perenosimykh kleshchami i nasekomymi v Germanii. Vestn. zashchity rasteniy. Spb Pushkin. 2008; 1:14-26.
  93. Smith KM. A text book of plant viral Disease. 3rd edition. Academic press New York; 1992.
  94. Stace-Smith R. Tobacco ringspot virus. CMI/AAB Descriptions of Plant Viruses No. 309. Wellesbourne, Association of Applied Biologists; 1985.
  95. Stevens M, Smith HG, Hallsworth PB. The host range of beet yellowing viruses among common arable weed species. Plant Pathology. 1994; 43(3):579-88. https://doi.org/10.1111/j.1365-3059.1994.tb01593.x
  96. Stevens WA. Plant Virus Disease Control. In: Virology of Flowering Plants. Tertiary Level Biology. Boston: Springer; 1983. https://doi.org/10.1007/978-1-4757-1251-3_6
  97. Sun H, Tu SS, Xue F, Duns G, Che J. Molecular characterization and evolutionary analysis of soybean mosaic virus infecting Pinellia ternata in China. Virus Genes. 2008; 36:177-90. https://doi.org/10.1007/s11262-007-0167-z
  98. Tahir MN, Lockhart B, Grinstead S, Mollov D. Characterization and complete genome sequence of a panicovirus from Bermuda grass by high-throughput sequencing. Arch Virol. 2017; 162(4):1099-102. https://doi.org/10.1007/s00705-016-3165-4
  99. Takács A, Horváth J, Gáborjányi R, Kazinczi G, Mikulás J. Hosts and non-hosts in plant virology and the effect of plant viruses on host plants. In: Plant Virus-Host Interaction: Molecular Approaches and Viral Evolution. RK Gaur, T Hohn, P Sharma, editors.  Amsterdam, Boston, Heidelberg: Elsevier Academic Press; 2014. p. 105-24. https://doi.org/10.1016/B978-0-12-411584-2.00005-6
  100. Takahashi K, Tanaka T, Iida W, Tsuda Y. Studies on virus diseases and causal viruses of soybean in Japan. Bull Tohoku Nat Agric Exp Stn. 1980; 62:1-130.
  101. Tolin SA, Lacy GH. Viral, bacterial, and phytoplasmal diseases of soybean. Soybeans: Improvement, Production and Uses In: Boerma HR, Specht JE, editors. Madison: American Society of Agronomy Inc; 2004. p. 765-819. https://doi.org/10.2134/agronmonogr16.3ed.c15
  102. Thresh JM. Gradients of plant virus diseases. Ann appl Biol. 1976; 82:381-406. https://doi.org/10.1111/j.1744-7348.1976.tb00577.x
  103. Truol G, Sagadin M, Rodriguez M. Fox tail millet (Setaria italica L.): a new reservoir species of the Wheat streak mosaic virus (WSMV) in the province of Buenos Aires. Biocell. 2010; 34:A135.
  104. Tsvei YaP, Bondar SO. [Zaburianenist pshenytsi ozymoi v riznorotatsiinykh sivozminakh]. Nauk pr In-tu bioenerhet kultur i tsukr buriakiv. 2017; 25:101-7. Ukrainian. https://doi.org/10.47414/np.25.2017.216875
  105. Udayashankar AC, Chandra NS, Niranjana SR, Lund OS, Prakash HS. First report of Bean Common Mosaic Virus infecting Lablab purpureus in India. Plant Dis. 2011; 95(7):881-952. https://doi.org/10.1094/PDIS-01-11-0009
  106. Verhoyen M, Gofflot A. New outbreak in Belgium of tomato spotted wilt virus transmitted by thrips: Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent. 1990; 55(3a):1059-68.
  107. Volkov YuG, Kakareka NN, Tolkach VF, Diakonov KP, Moskvina TV, Shchelkanov MYu. [Tli (Homoptera: Aphididae) - perenoschiki virusnykh bolezney bobovykh na Dalnem Vostoke]. Chteniya pamyati Alekseya Ivanovicha Kurentsova. 2019; 30: 211-22. Russian.
  108. Wang J, Li W, Zhang J, Xu Y, Chen X. Alarm on the Rapid Increase in Distribution of Cucumber Green Mottle Mosaic Virus in China, J Plant Sci. 2019; 7(2):48-53.
  109. Worrall EA, Wamonje FO, Mukeshimana G, Harvey JJW, Carr JP, Mitter N. Bean common mosaic virus and Bean common mosaic necrosis virus: Relationships, biology and prospects for control. Adv Virus Res. 2015; 93:1-46. https://doi.org/10.1016/bs.aivir.2015.04.002
  110. Xu H, Nie J. Identification, characterization and molecular detection of Alfalfa mosaic virus in potato. Phytopathology. 2006; 96:1237-1242. https://doi.org/10.1094/PHYTO-96-1237
  111. Yadav MK, Aravindan S, Mukherjee AK, Bag MK, Lenka S, Ghritlahre SK. Viral Diseases of Soybean. Popular Kheti. 2015; 3(3):124-27.
  112. Yoon Y, Lim S, Jang YW, Kim B-S, Bao DH, Maharjan R, Yi H, Bao S, et al. First report of Soybean mosaic virus and Soybean yellow mottle mosaic virus in Vigna angularis. Plant Dis. 2017. https://doi.org/10.1094/PDIS-08-17-1284-PDN
  113. Zhang MH, Lu WQ, Zhong ZX, Wang RY, Li YH. The importance of the diseased seedlings from SMV infected seeds and the vector of the virus in the epidemic. Acta Phytopathol. Sin. 1986; 16:151-58.
  114. Zitter AT. A checklist of major weeds and crops as natural hosts for plant viruses in the Northeast. New York: Cornell University; 2003. http://vegetablemdonline.ppath.cornell.edu/Tables/WeedHostTable.html
  115. Zuza VS. [K voprosu rasprostranennosti sornyakov]. Nauk pr In-tu bioenerhet kultur i tsukr buriakiv. 2014; 20:41-46. Russian.