Mikrobiol. Z. 2020; 82(5):88-97.
doi: https://doi.org/10.15407/microbiolj82.05.088

Bacillus thuringiensis spp. israelensis and Control of Aedes aegypti
Invasive Mosquitoes Species in Ecosystems

T.I. Patyka, M.V. Patyka

National University of Life and Environmental Sciences of Ukraine
13 Heroiv Oborony Str., Kyiv, 03041, Ukraine

The review presents materials on microbiocontrol of vector mosquitoes using entomopathogenic bacteria Bacillus thuringiensis ssp. israelensis (Bti). Control of invasive ectoparasites is a major health issue, as mosquito species are capable of transmitting diseases, including extremely dangerous human and animal infections (malaria, tularemia, yellow fever, hemorrhagic fevers, dengue fever, taiga (or tickborne) encephalitis, filariasis, Ku fever, cattle anaplasmosis and many other infections and invasions). Bti is considered worldwide as a promising microbial agent that combines targeted efficacy in protective measures and environmental safety. The study of the effect of Bti δ-endotoxins on the intestinal epithelium of Aedes genus mosquitoes, search and characterization of specific receptors are extremely important for understanding the mechanism of action and activity of entomocidal proteins, the basis of the pathogenic effect of polytypic B. thuringiensis. Synergism, a combination of selective larvicidal action of natural Bti strains in combination with strategies of resistance emergence preventing demonstrate a wide range of possibilities of their use and unique evolutionary features of this endospore-forming bacterium as a modern larvicidal agent against Aedes aegypti population.

Keywords: Bacillus thuringiensis ssp. israelensis, Aedes aegypti, larvicidal properties, δ-endotoxins, entomospecificity.

Full text (PDF, in English)

  1. Bellard C, Berstelsmeier C, Leadley P, et al. Impact of climate change on the future of biodiversity. Ecol Lett; 2012. 15:365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x
  2. Gadzalo YM, Patyka MV, Zarishnyak AS. [Agrobiology of the Rhizosphere of Plants]. Kyiv: Agrarian Science; 2015. Russian.
  3. Patyka MV, Patyka VP. [Current Problems of Biodiversity and Climate Change]. Bulletin of Agricultural Science. 2014; 6:5–10. Ukrainian.
  4. Patyka NV, Kolodyazhnyi AYu, Ibatullin II. [The Evaluation of Metagenome and Detection of Functionally Significant Polymorphisms of Prokaryotes of Soil by Method of Pyrosequencing]. Mikrobiol Z. 2016; 78(2):43–51. Ukrainian. https://doi.org/10.15407/microbiolj78.02.043
  5. Gadzalo YaM, Patyka NV, Zaryshnyak AS, Patyka TI. [Agroecological Engineering in Rhizosphere Biocontrol Plants and Formation of Soil Health]. Mikrobiol Z. 2017; 79(4):88–109. Ukrainian. https://doi.org/10.15407/microbiolj79.04.088
  6. Augustin J. L’assourdissant été: les insectes et le changement climatique. Dire, 2015; 24(3):8–13.
  7. Tomich TP, Brodt S, Ferris H, et al. Agroecology: A Review from a Global-Change Perspective. Ann Rev Environ Resour; 2011. 36:193–222. https://doi.org/10.1146/annurev-environ-012110-121302
  8. Moonen AC, Barberi P. Functionnal Biodiversity: An Agroecosystem Approach. Agr Ecosyst Environ; 2008. 127:7–21. https://doi.org/10.1016/j.agee.2008.02.013
  9. Cardinale BJ, Duffy E, Gonzales A, et al. Biodiversity Loss and Its Impact on Humanity. Nature; 2012: 486:59–67. https://doi.org/10.1038/nature11148
  10. Reid WV, Mooney HA, Cropper A, Capistrano D, et al. Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA; 2005.
  11. Federici BA. Bacillus thuringiensis in Biological Control. In: Handbook of Biological Control. Fisher T. Academic Press. 1999; 575–593. https://doi.org/10.1016/B978-012257305-7/50068-0
  12. Federici BA, Park HW, Bideshi DK, Wirth MC, Johnson JJ. Review. Recombinant Bacteria for Mosquito Control. The Journal of Experimental Biology. 2003; 206:3877–3885. https://doi.org/10.1242/jeb.00643
  13. Talaat A. El-kersh, Ashraf M. Ahmed, Yazeed A. Al-sheikh, et al. Isolation and characterization of native Bacillus thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles gambiae (s.l.). Parasit Vectors. 2016; 9:647. https://doi.org/10.1186/s13071-016-1922-6
  14. Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae. Katiane dos Santos Lobo, Joelma Soares-da-Silva, Maria Cleoneide da Silva, et al. Revista Brasileira de Entomologia. 2018; 62:1. https://doi.org/10.1016/j.rbe.2017.11.004
  15. Monnerat R, Dumas V, Ramos F, et al. Evaluation of different larvicides for the control of Aedes aegypti (Linnaeus) (Diptera: Culicidae) under simulated field conditions. BioAssay. 2012; 7:1–4. https://doi.org/10.14295/BA.v7.0.73
  16. Fedorova MV, Shvets OG, Yunicheva YuV, et al. [Dissemination of Invasive Mosquito Species, Aedes (Stegomyia) aegypti (L., 1762) and Aedes (Stegomyia) albopictus (Skuse, 1895) in the South of Krasnodar Region, RU]. Problems of Particularly Dangerous Infections. 2018; 2:101–105. Russian. https://doi.org/10.21055/0370-1069-2018-2-101-105
  17. Patyka TI, Patyka MV. Effective Use Entomopathogenes of Bacillus thuringiensis H14 in Mosquito Control Aedes aegypti. Bulletin of the Poltava State Agrarian Academy; 2010. 4:12–16.
  18. European Centre for Disease Prevention and Control. Guidelines for the Surveillance of Invasive Mosquitoes in Europe. Stockholm: ECDC; 2012.
  19. Medlock JM, Hansford KM, Schaffner F, et al. A Review of the Invasive Mosquitoes in Europe: Ecology, Public Health Risks and Control Options. Vector Borne Zoonotic Dis; 2012. 12(6):435–47. https://doi.org/10.1089/vbz.2011.0814
  20. Schaffner F, Mathis A. Dengue and Dengue Vectors in the WHO European Region: Past, Present, and Scenarios for the Future. The Lancet Infectious Diseases; 2014. 14(12):1271–80. https://doi.org/10.1016/S1473-3099(14)70834-5
  21. Medlock JM, Hansford KM, Versteirt V, et al. An Entomological Review of Invasive Mosquitoes in Europe. Bull Entomol Res; 2015. 105(06):637–63. https://doi.org/10.1017/S0007485315000103
  22. Shaikevich EV, Patraman IV, Bogacheva AS, et al. Invasive Mosquito Species Aedes albopictus and Aedes aegypti on the Black Sea Coast of the Caucasus: Genetics (COI, ITS2), Wolbachia and Dirofilaria infections. Vavilov Journal of Genetics and Breeding; 2018. 22(5):574–585. https://doi.org/10.18699/VJ18.397
  23. Ranson H, Burhani J, Lumjuan N, Black W. Insecticide Resistance in Dengue Vectors. In: World Health Organization, Special Programme for Research and Training in Tropical Diseases. TropIKA. Geneva: World Health Organization; 2010; 1(1).
  24. Marcombe S, Mattieu RB, Pocquet N, Riaz M-A, Poupardin R, Sélior S, et al. Insecticide resistance in the dengue vector Aedes aegypti from Martinique: distribution, mechanisms and relations with environmental factors. PLoS One 2012;7(2):e30989. https://doi.org/10.1371/journal.pone.0030989
  25. Curriculum on Invasive Mosquitoes and New and Recurring Vector-Borne Diseases in the WHO European Region; 2016:71.
  26. Patyka T, Bublyk M, Patyka M. Problem of Overcoming the Resistance of Harmful Organisms to the Action of Phytoprotective Preparations. Journal of Nature science and sustainable technology. 2017; 3(11):1–5.
  27. Kandybin NV, Patyka TI, Ermolova VP, Patyka VF. [Microbiocontrol of the Number of Insects and its Dominant Bacillus thuringiensis]. St. Petersburg-Pushkin: Innovation Center for Plant Protection; 2009. Russian.
  28. Lahkim-Tsror L, Pascar-Gluzman C, Margalit J, Barak Z. Larvicidal activity of Bacillus thuringiensis subsp. israelensis, serovar H14 in Aedes aegypti: Histopathological studies. Journal of Invertebrate Pathology. 1983; 41(1):104–116. https://doi.org/10.1016/0022-2011(83)90241-0
  29. Elleuch J, Zribi Zghal R, Noël Lacoix M, et al. Evidence of two mechanisms involved in Bacillus thuringiensis israelensis decreased toxicity against mosquito larvae: Genome dynamic and toxins stability. Microbiological Research. 2015;176: 48–54. https://doi.org/10.1016/j.micres.2015.04.007
  30. Patyka NV, Patyka TI. [Symbiotic microbial communities of insects: functioning and entomopathogenic action potential initiation on the example of Bacillus thuringiensis]. Mikrobiol Z. 2020; 82(1):62–73. Ukrainian. https://doi.org/10.15407/microbiolj82.01.062
  31. Adang MJ, Crickmore N, Jurat-Fuentes JL. Diversity of Bacillus thuringiensis Crystal Toxins and Mechanism of Action. Adv Insect Physiol. 2014; 47:39–87. https://doi.org/10.1016/B978-0-12-800197-4.00002-6
  32. Bravo A, Gomez I, Porta H., et al. Evolution of Bacillus thuringiensis Cry Toxins Insecticidal Activity. Microbial Biotechnol. 2013; 6:17−20. https://doi.org/10.1111/j.1751-7915.2012.00342.x
  33. Devidson EW, Myers P. Parasporal Inclusions in Bacillus sphaericus. FEMS Microbiol Lett. 1981; 10:261–265. https://doi.org/10.1111/j.1574-6968.1981.tb06252.x
  34. el-Bendary MA. Bacillus thuringiensis and Bacillus sphaericus Biopesticides Production. Journal of Basic Microbiology. 2006; 46(2):158–170. https://doi.org/10.1002/jobm.200510585
  35. Ben-Dov E. Bacillus thuringiensis subsp. israelensis and Its Dipteran-Specific Toxins. Toxins. 2014; 6(4):1222–1243. https://doi.org/10.3390/toxins6041222
  36. Berry C, O’Neil S, Ben-Dov E, et al. Complete Sequence and Organization of pBtoxis, the Toxin-coding Plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol. 2002; 68:5082–5095. https://doi.org/10.1128/AEM.68.10.5082-5095.2002
  37. Patyka TI, Patyka NV, Patyka VF. [Phylogenetic Interrelations Between Serological Variants of Bacillus thuringiensis]. Biopolym Cell. 2009; 25(3):240–244. Russian. https://doi.org/10.7124/bc.0007E2
  38. Edwards K, Logan J, Saunders N. Real-time PCR: An Essential Guide. UK: Horizon Bioscience. 2004:346.
  39. Ermolova VP, Grishechkina SD, Belousova ME, et al. [Insecticidal Properties of Bacillus thuringiensis var. israelensis. II. Comparative Morphological and Molecular Genetic Analysis of the Crystallogenic and Acrystallogenic Strains]. Agricultural Biology. 2019; 54(6):1281–1289. Russian. https://doi.org/10.15389/agrobiology.2019.6.1281eng
  40. Patel KD, Bhanshali FC, Chaudhary AV, Ingle SS. A New Enrichment Method for Isolation of Bacillus thuringiensis From Diverse Sample Types. Appl Biochem Biotech. 2013; 170:58–66. https://doi.org/10.1007/s12010-013-0145-y
  41. Zhong CH, Ellar DJ, Johnson B, et al. Characterization of a Bacillus thuringiensis Delta-endotoxin Which is Toxic to Insects in Three Orders. J Invertebr Pathol. 2000; 76:131–134. https://doi.org/10.1006/jipa.2000.4962
  42. Smirnov OV, Grishechkina SD. [Problems of Stabilization of Valuable Properties of Bacillus thuringiensis Strains – Producers of Larvicide Biological Preparations]. Plant protection news. 2009; 1:26–34. Russian.
  43. Paun O, Schönswetter P. Amplified Fragment Length Polymorphism: An Invaluable Fingerprinting Technique for Genomic, Transcriptomic, and Epigenetic Studies. Methods Mol Biol. 2012; 862:75–87. https://doi.org/10.1007/978-1-61779-609-8_7
  44. Nassonova E.S. Pulsed Field Gel Electrophoresis: Theory, Instruments and Applications. Cytology. 2008; 50(11):927–935.
  45. Nacke H, Thürmer A, Wollherr A, et al. Pyrosequencing-Based Assessment of Bacterial Community Structure Along Different Management Types in German Forest and Grassland Soils. PLoS ONE. 2011; 6(2):e17000. https://doi.org/10.1371/journal.pone.0017000
  46. Patyka MV, Kolodiazhnyi AYu, Borko YuP. Modern Molecular Methods to Study the Microbial Biome and Metagenome of Agrarian Soils. Agrochemistry and Soil Science. 2017; 86:116–124. https://doi.org/10.31073/acss86-17
  47. Wei S, Chelliah R, Park B-J, et al. Differentiation of Bacillus thuringiensis From Bacillus cereus Group Using a Unique Marker Based on Real-Time PCR. Front Microbiol. 2019; 10:883. https://doi.org/10.3389/fmicb.2019.00883
  48. Després L, Frutos R, Lagneau C. Using the Bio-Insecticide Bacillus thuringiensis israelensis in Mosquito Control. Pesticides in the Modern World – Pests Control and Pesticides Exposure and Toxicity Assessment. 2010. p. 93–126.
  49. Zubasheva MV. Characterization of Brevibacillus laterosporus strains and biologically active compounds produced by them: dissertation candidate of biological sciences: 03.02.03: Moscow State University named after M.V. Lomonosov. Moscow; 2012.
  50. Kandybin NV. [Bacterial control of rodents and harmful insects: theory and practice]. Moscow: agricultural industrial publication; 1989. Russian.