Mikrobiol. Z. 2020; 82(4):94-109.
doi: https://doi.org/10.15407/microbiolj82.04.094

Practically Valuable Properties of the Surfactant Synthesized
by Rhodococcus Genus Actinobacteria

T.P. Pirog1,2, N.M. Petrenko1, O.I. Skrotska1, O.I. Paliichuk1,
T.A. Shevchuk2, G.O. Iutynska2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Currently, microbial surfactants are the objects of intense research because of their surface-active and emulsifying properties, high antimicrobial, anti-adhesive activity, and ability to destroy biofilms. The review provides current literature data on the properties of surfactants synthesized by Rhodococcus genus actinobacteria, determining their practical significance. The researchers’ interest in the surfactants of Rhodococcus bacteria is primarily due to their key role in the destruction of xenobiotics (aliphatic, heterocyclic and polycyclic aromatic hydrocarbons). Information on the antimicrobial and antiadhesive activity of surfactants of Rhodococcus genus bacteria remains scarce at present, while the immunomodulatory properties of these products of microbial synthesis are studied more actively than for other microbial surfactants known in the world. The data of our experimental studies on the practically valuable properties of surfactants synthesized by Rhodococcus erythropolis IMV Ac-5017 are presented. Unlike surfactants of other representatives of Rhodococcus genus bacteria, surfactants of IMV As-5017 strain are multifunctional preparations. Because in addition to the high efficiency of the destruction of oil pollution, including complex with heavy metals, surfactants are characterized by high antimicrobial and antiadhesive activity, including the ability to destroy biofilms.

Keywords: Rhodococcus, surfactants, destruction of xenobiotics, antimicrobial and anti-adhesive activity, destruction of biofilms, immunomodulatory properties.

Full text (PDF, in English)

  1. Ceniceros A, Dijkhuizen L, Petrusma M, Medema MH. Genome-based exploration of the specia lized metabolic capacities of the genus Rhodococcus. BMC Genomics. 2017; 18(1):593. https://doi.org/10.1186/s12864-017-3966-1
  2. Kim D, Choi KY, Yoo M, Zylstra GJ, Kim E. Biotechnological potential of Rhodococcus piodegradative pathways. J Microbiol Biotechnol. 2018; 28(7):1037-1051. https://doi.org/10.4014/jmb.1712.12017
  3. Zampolli J, Zeaiter Z, Di Canito A, Di Gennaro P. Genome analysis and omics approaches provide new insights into the biodegradation potential of Rhodococcus. Appl Microbiol Biotechnol. 2019; 103(3):1069-1080. https://doi.org/10.1007/s00253-018-9539-7
  4. Vergani L, Mapelli F, Suman J, Cajthaml T, Uhlik O, Borin S. Novel PCB-degrading Rhodococcus strains able to promote plant growth for assisted rhizoremediation of historically polluted soils. PLoS One. 2019; 14(8):e0221253. https://doi.org/10.1371/journal.pone.0221253
  5. Paulino BN, Pessôa MG, Mano MC, Molina G, Neri-Numa IA, Pastore GM. Current status in biotechnological production and applications of glycolipid biosurfactants. Appl Microbiol Biotechnol. 2016; 100(24):10265-10293. https://doi.org/10.1007/s00253-016-7980-z
  6. Retamal-Morales G, Heine T, Tischler JS, Erler B, Gröning JAD, Kaschabek SR, et al. Draft genome sequence of Rhodococcus erythropolis B7g, a biosurfactant producing actinobacterium. J Biotechnol. 2018; 280:38-41. https://doi.org/10.1016/j.jbiotec.2018.06.001
  7. Pirog TP, Heichenko BS, Shevchuk TA, Muchnik FV. [Biosynthesis of surfactants by actinobacteria of Rhodococcus genus]. Mikrobiol Z. 2020; 82(2):67-81. Ukrainian. https://doi.org/10.15407/microbiolj82.02.067
  8. Ward AL, Reddyvari P, Borisova R, Shilabin AG, Lampson BC. An inhibitory compound produced by a soil isolate of Rhodococcus has strong activity against the veterinary pathogen R. equi. PLoS One. 2018; 13(12):e0209275. https://doi.org/10.1371/journal.pone.0209275
  9. Ishikawa K, Takahashi K, Hosoi S, Takeda H, Yoshida H, Wakana D, et al. Antimicrobial agent isolated from Coptidis rhizome extract incubated with Rhodococcus sp. strain BD7100. J Antibiot (Tokyo). 2019; 72(2):71-78. https://doi.org/10.1038/s41429-018-0114-3
  10. Parravicini F, Brocca S, Lotti M. Evaluation of the conformational stability of recombinant desulfurizing enzymes from a newly isolated Rhodococcus sp. Mol Biotechnol. 2016; 58(1):1-11. https://doi.org/10.1007/s12033-015-9897-7
  11. Busch H, Hagedoorn PL, Hanefeld U. Rhodococcus as A versatile biocatalyst in organic synthesis. Int J Mol Sci. 2019; 20(19):E4787. https://doi.org/10.3390/ijms20194787
  12. Sahinkaya M, Colak DN, Ozer A, Canakci S, Deniz I, Belduz AO. Cloning, characterization and paper pulp applications of a newly isolated DyP type peroxidase from Rhodococcus sp. T1. Mol Biol Rep. 2019; 46(1):569-580. https://doi.org/10.1007/s11033-018-4509-9
  13. Elsayed Y, Refaat J, Abdelmohsen UR, Fouad MA. The Genus Rhodococcus as a source of novel bioactive substances: a review. J Pharmacogn Phytochem. 2017; 6(3):83−92.
  14. Mnif I, Ghribi D. Microbial derived surfaceactive compounds: properties and screening concept. World J Microbiol Biotechnol. 2015; 31(7):1001−20. https://doi.org/10.1007/s11274-015-1866-6
  15. Gein SV, Kochina OA, Kuyukina MS, Ivshina IB. Effects of glycolipid Rhodococcus biosurfactant on innate and adaptive immunity parameters in vivo. Bull Exp Biol Med. 2018; 165(3):368−72. https://doi.org/10.1007/s10517-018-4172-0
  16. Vecino X, Rodríguez-López L, Ferreira D, Cruz JM, Moldes AB, Rodrigues LR. Bioactivity of glycolipopeptide cell-bound biosurfactants against skin pathogens. Int J Biol Macromol. 2018; 109:971−979. https://doi.org/10.1016/j.ijbiomac.2017.11.088
  17. Naughton PJ, Marchant R, Naughton V, Banat IM. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol. 2019; 27(1):12−28. https://doi.org/10.1111/jam.14243
  18. Pirog TP, Shulyakova MO, Shevchuk TA, Sofyl kanich AP. [Biotechnological potential of bacteria of Rhodococcus strain and their metabolites]. Biotechnology. 2012; 5(2):51−67. Ukrainian.
  19. Bell KS, Philp JC, Aw DW, Christofi N. The genus Rhodococcus. J Appl Microbiol. 1998; 85(2):195−210. https://doi.org/10.1046/j.1365-2672.1998.00525.x
  20. Li C, Zhou ZX, Jia XQ, Chen Y, Liu J, Wen JP. Biodegradation of crude oil by a newly isolated strain Rhodococcus sp. JZX-01. Appl Biochem Biotechnol. 2013; 171(7):1715-25. https://doi.org/10.1007/s12010-013-0451-4
  21. Lee DW, Lee H, Kwon BO, Khim JS, Yim UH, Kim BS, et al. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environ Pollut. 2018; 241:254-264. https://doi.org/10.1016/j.envpol.2018.05.070
  22. Kis ÁE, Laczi K, Zsíros S, Kós P, Tengölics R, Bounedjoum N, et al. Characterization of the Rhodococcus sp. MK1 strain and its pilot application for bioremediation of diesel oil-contaminated soil. Acta Microbiol Immunol Hung. 2017; 64(4):463-482. https://doi.org/10.1556/030.64.2017.037
  23. Chen Z, Zheng Z, Wang FL, Niu YP, Miao JL, Li H. Intracellular metabolic changes of Rhodococcus sp. LH during the biodegradation of diesel oil. Mar Biotechnol (NY). 2018; 20(6):803-812. https://doi.org/10.1007/s10126-018-9850-4
  24. Van Hong Thi Pham, Chaudhary DK, Jeong SW, Kim J. Oil-degrading properties of a psychrotolerant bacterial strain, Rhodococcus sp. Y2-2, in liquid and soil media. World J Microbiol Biotechnol. 2018; 34(2):33. https://doi.org/10.1007/s11274-018-2415-x
  25. Hristov AE, Christova NE, Kabaivanova LV, Nacheva LV, Stoineva IB, Petrov PD. Simultaneous biodegradation of phenol and n-hexadecane by cryogel immobilized biosurfactant producing strain Rhodococcus wratislawiensis BN38. Pol J Microbiol. 2016; 65(3):287-293. https://doi.org/10.5604/17331331.1215608
  26. Dang NP, Landfald B, Willassen NP. Biological surface-active compounds from marine bacteria. Environ Technol. 2015; 37(9):1151-8. https://doi.org/10.1080/09593330.2015.1103784
  27. Mishra S, Singh SN, Pande V. Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. Bioresour Technol. 2014; 164:299-308. https://doi.org/10.1016/j.biortech.2014.04.076
  28. White DA, Hird LC, Ali ST. Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol. 2013; 115(3):744-55. https://doi.org/10.1111/jam.12287
  29. Stancu MM. Physiological cellular responses and adaptations of Rhodococcus erythropolis IBBPo1 to toxic organic solvents. J Environ Sci (China). 2014; 26(10):2065-75. https://doi.org/10.1016/j.jes.2014.08.006
  30. Ivshina I, Kostina L, Krivoruchko A, Kuyukina M, Peshkur T, Anderson P, et al. Removal of polyI1S0S6N cyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231. J Hazard Mater. 2016; 312:8-17. https://doi.org/10.1016/j.jhazmat.2016.03.007
  31. Rahsepar S, Langenhoff AAM, Smit MPJ, van Eenennaam JS, Murk AJ, Rijnaarts HHM. Oil biodegradation: Interactions of artificial marine snow, clay particles, oil and Corexit. Mar Pollut Bull. 2017; 125(1-2):186-191. https://doi.org/10.1016/j.marpolbul.2017.08.021
  32. Pidgorskyi VS, Nogina TM. Biodegradation of petroleum hydrocarbons by Actinobacteria and Acinetobacteria strains producing biosurfactant. Mikrobiol Z. 2016; 78(6):92−103. https://doi.org/10.15407/microbiolj78.06.092
  33. Pi Y, Chen B, Bao M, Fan F, Cai Q, Ze L, et al. Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. Bioresour Technol. 2017; 232:263-269. https://doi.org/10.1016/j.biortech.2017.02.007
  34. Kundu D, Hazra C, Dandi N, Chaudhari A. Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation. 2013; 24(6):775-93. https://doi.org/10.1007/s10532-013-9627-4
  35. Kundu D, Hazra C, Chaudhari A. Biodegradation of 2,4-dinitrotoluene with Rhodococcus pyridinivorans NT2: characteristics, kinetic modeling, physiological responses and metabolic pathway. RSC Adv. 2015; 5:38818-38829. https://doi.org/10.1039/C5RA02450A
  36. Kundu D, Hazra C, Chaudhari A. Isolation, scree ning and assessment of microbial isolates for bio degradation of 2,4- and 2,6-dinitrotoluene. Int J Curr Microbiol Appl Sci. 2015; 4(1):564-574.
  37. Kundu D, Hazra C, Chaudhari A. Statistical modeling and optimization of culture conditions by response surface methodology for 2,4- and 2,6-dinitrotoluene biodegradation using Rhodococcus pyridinivorans NT2. 3 Biotech. 2016; 6(2):155. https://doi.org/10.1007/s13205-016-0468-9
  38. Pirog TP, Shulyakova MO, Nikituk LV, Antonuk SI, Elperin IV. Industrial waste bioconversion into surfactants by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405. Biotechnologia Acta. 2017; 10(2):22−33. https://doi.org/10.15407/biotech10.02.022
  39. Petrikov K, Delegan Y, Surin A, Ponamoreva O, Puntus I, Filonov A, et al. Glycolipids of Pseudomonas and Rhodococcus oil-degrading bacteria used in bioremediation preparations: formation and structure. Process Biochem. 2013; 48(5−6):931-35. https://doi.org/10.1016/j.procbio.2013.04.008
  40. Nechaeva IA, Luong TM, Satina VE, Ponamoreva ON. [Influence of the physiological characteristics of the bacteria genus Rhodococcus on the degradation n-hexadecane]. Proceedings Tula State University. Series: Natural Sciences. 2016; 1:90−8. Russian.
  41. Luong TM, Ponamoreva ON, Nechaeva IA, Petrikov KV, Delegan YA, Surin AK, et al. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature. World J Microbiol Biotechnol. 2018; 34(2):20. https://doi.org/10.1007/s11274-017-2401-8
  42. Tyagi M, da Fonseca MM, Carvalho CC. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. 2011; 22(2):231-41. https://doi.org/10.1007/s10532-010-9394-4
  43. Pirog TP, Konon AD, Sofilkanich AP, Shevchuk TA, Iutinska GO. [Destruction of Oil in the Presence of Cu2+ and Surfactants of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017 and Nocardia vaccinii IMV B-7405]. Mikrobiol. Z. 2015; 77(2):2-8. Russian. https://doi.org/10.15407/microbiolj77.02.002
  44. Pirog TP, Konon AD, Savenko IV. Microbial surfactants in environmental technologies. Biotechnologia acta. 2015; 8(4):21-39. https://doi.org/10.15407/biotech8.04.021
  45. Tang J, He J, Liu T, Xin X, Hu H. Removal of heavy metal from sludge by the combined application of a biodegradable biosurfactant and complexing agent in enhanced electrokinetic treatment. Chemosphere. 2017; 189:599-608. https://doi.org/10.1016/j.chemosphere.2017.09.104
  46. Yang Z, Shi W, Yang W, Liang L, Yao W, Chai L, et al. Combination of bioleaching by gross bacterial biosurfactants and flocculation: A potential remediation for the heavy metal contaminated soils. Chemosphere. 2018; 206:83-91. https://doi.org/10.1016/j.chemosphere.2018.04.166
  47. Jimoh AA, Lin J. Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicol Environ Saf. 2019; 184:109607. https://doi.org/10.1016/j.ecoenv.2019.109607
  48. Kim CH, Lee DW, Heo YM, Lee H, Yoo Y, Kim GH, et al. Desorption and solubilization of anthracene by a rhamnolipid biosurfactant from Rhodococcus fascians. Water Environ Res. 2019; 91(8):739−747. https://doi.org/10.1002/wer.1103
  49. Rapp P, Bock H, Wray V, Wagner F. Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J Gen Microbiol. 1979; 115(2):491-503. https://doi.org/10.1099/00221287-115-2-491
  50. Uchida Y, Misawa S, NakaharaT, Tabuchi T. Factors affecting the production of succinoyl trehalose lipids by Rhodococcus erythropolis SD-74 grown on n-alkanes. Agricultural Biol Chem. 1989; 53(3):765-9. https://doi.org/10.1271/bbb1961.53.765
  51. Janek T, Krasowska A, Czyżnikowska Ż, Łukaszewicz M. Trehalose lipid biosurfactant reduces adhesion of microbial pathogens to polystyrene and silicone surfaces: an experimental and computational approach. Front Microbiol. 2018; 9:2441. https://doi.org/10.3389/fmicb.2018.02441
  52. Abdel-Megeed A, Al-Rahma AN, Mostafa AA, Husnu Can Baser K. Biochemical characterization of anti-microbial activity of glycolipids produced by Rhodococcus erythropolis. Pak J Bot. 2011; 43(2):1323−34.
  53. Cortés-Sánchez Ade J, Hernández-Sánchez H, Jaramillo-Flores ME. Biological activity of glyco lipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol Res. 2013; 168(1):22-32. https://doi.org/10.1016/j.micres.2012.07.002
  54. Kuyukina MS, Ivshina IB, Korshunova IO, Stukova GI, Krivoruchko AV. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Express. 2016; 6(1):14. https://doi.org/10.1186/s13568-016-0186-z
  55. Pirog TP, Konon AD, Sofilkanich AP, Iutinskaia GA. Effect of surface-active substances of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017, and Nocardia vaccinii K-8 on phytopathogenic bacteria. Appl Biochem Microbiol. 2013; 49(4):360-7. https://doi.org/10.1134/S000368381304011X
  56. Pirog TP, Shevchuk TA, Petrenko NM, Paliichuk OI, Iutynska GO. [Influence of cultivation conditions of Rhodococcus erythropolis IMV Ac-5017 on the properties of synthesized sur factants]. Mikrobiol Z. 2018; 80(4):13-27. Ukrainian. https://doi.org/10.15407/microbiolj80.04.013
  57. Pirog TP, Lutsay DA, Kliuchka LV, Beregova KA. Antimicrobial activity of surfactants of microbial origin. Biotechnologia Acta. 2019; 12(1):39−57.
  58. 58. Pirog T, Grytsenko N, Konon A, Shevchuk T, Iutynska G. [Antiadhesive potencial of Rhodococcus erythropolis IMB Ac-5017 biosurfactants]. Mikrobiol Z. 2014; 76(6):9-16. Russian.
  59. Pirog TP, Konon AD, Beregovaya KA, Shulyakova MA. Antiadhesive properties of the surfactants of Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017, and Nocardia vaccinii IMB B-7405. Microbiology. 2014; 83(6):732-9. https://doi.org/10.1134/S0026261714060150
  60. Elshikh M, Funston S, Chebbi A, Ahmed S, Marchant R, Banat IM. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. N Biotechnol. 2017; 36:26−36. https://doi.org/10.1016/j.nbt.2016.12.009
  61. Elshikh M, Moya-Ramírez I, Moens H, Roelants S, Soetaert W, Marchant R, et al. Rhamnolipids and lactonic sophorolipids: natural antimicrobial surfactants for oral hygiene. J Appl Microbiol. 2017; 123(5):1111−23. https://doi.org/10.1111/jam.13550
  62. Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, et al. Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol. 2017; 101(15):5951−60. https://doi.org/10.1007/s00253-017-8396-0
  63. Cochrane SA, Vederas JC. Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates. Med Res Rev. 2016; 36(1):4−31. https://doi.org/10.1002/med.21321
  64. Díaz De Rienzo MA, Banat IM, Dolman B, Winterburn J, Martin PJ. Sophorolipid biosurfactants: possible uses as antibacterial and antibiofilm agent. N Biotechnol. 2015; 32(6):720−6. https://doi.org/10.1016/j.nbt.2015.02.009
  65. Ryll R, Kumazawa Y, Yano I. Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids - a review. Microbiol Immunol. 2001; 45(12): 801-11. https://doi.org/10.1111/j.1348-0421.2001.tb01319.x
  66. Kuyukina MS, Ivshina IB, Baeva TA, Kochina OA, Gein SV, Chereshnev VA. Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. N Biotechnol. 2015; 32(6):559-68. https://doi.org/10.1016/j.nbt.2015.03.006
  67. Kaneda K, Sumi Y, Kurano F, Kato Y, Yano I. Granuloma formation and hemopoiesis induced by C36-48-mycolic acid-containing glycolipids from Nocardia rubra. Infect Immun. 1986; 54(3):869−75. https://doi.org/10.1128/IAI.54.3.869-875.1986
  68. Matsunaga I, Oka S, Fujiwara N, Yano I. Relationship between induction of macrophage chemotactic factors and formation of granulomas caused by mycoloyl glycolipids from Rhodococcus ruber (Nocardia rubra). J Biochem. 1996; 120(3): 663-70. https://doi.org/10.1093/oxfordjournals.jbchem.a021463
  69. Ueda S, Fujiwara N, Naka T, Sakaguchi I, Ozeki Y, Yano I, et al. Structure-activity relationship of mycoloyl glycolipids derived from Rhodococcus sp. 4306. Microb Pathog. 2001; 30(2):91-9. https://doi.org/10.1006/mpat.2000.0413
  70. Kuyukina MS, Ivshina IB, Gein SV, Baeva TA, Chereshnev VA. In vitro immunomodulating activity of biosurfactant glycolipid complex from Rhodococcus ruber. Bull Exp Biol Med. 2007; 144(3):326-30. https://doi.org/10.1007/s10517-007-0324-3
  71. Gein SV, Kuyukina MS, Ivshina IB, Baeva TA, Chereshnev VA. In vitro cytokine stimulation assay for glycolipid biosurfactant from Rhodococcus ruber: role of monocyte adhesion. Cytotechnology. 2011; 63(6):559-66. https://doi.org/10.1007/s10616-011-9384-3
  72. Fujita T, Sugimoto N, Yokoi F, Ohtsubo Y, Ikutoh M, Kato Y, et al. Induction of interferons (IFNs) and tumor necrosis factor (TNF) in mice by a novel glycolipid trehalose 2,3,6'-trimycolate from Rhodococcus aurantiacus (Gordona aurantiaca). Microbiol Immunol. 1990; 34(6):523-32. https://doi.org/10.1111/j.1348-0421.1990.tb03169.x
  73. Baeva TA, Gein SV, Kuyukina MS, Ivshina IB, Kochina OA, Chereshnev VA. Effect of glycolipid Rhodococcus biosurfactant on secretory activity of neutrophils in vitro. Bull Exp Biol Med. 2014; 157(2):238-42. https://doi.org/10.1007/s10517-014-2534-9
  74. Chereshnev VA, Gein SV, Baeva TA, Galkina TV, Kuyukina MS, Ivshina IB. Modulation of cytokine secretion and oxidative metabolism of innate immune effectors by Rhodococcus biosurfactant. Bull Exp Biol Med. 2010; 149(6):734-8. https://doi.org/10.1007/s10517-010-1039-4
  75. de Boer EC, De Reijke TM, Vos PC, Kurth KH, Schamhart DH. Immunostimulation in the urinary bladder by local application of Nocardia rubra cell-wall skeletons (Rubratin) and bacillus Calmette-Guérin as therapy for superficial bladder cancer: a comparative study. Clin Infect Dis. 2000; 31 Suppl 3:S109-14. https://doi.org/10.1086/314062
  76. Natsuhara Y, Oka S, Kaneda K, Kato Y, Yano I. Parallel antitumor, granuloma-forming and tumor-necrosis-factor-priming activities of mycoloyl glycolipids from Nocardia rubra that differ in carbohydrate moiety: structure-activity relationships. Cancer Immunol Immunother. 1990; 31(2):99-106. https://doi.org/10.1007/BF01742373
  77. Sudo T, Zhao X, Wakamatsu Y, Shibahara M, Nomura N, Nakahara T, et al. Induction of the differentiation of human HL-60 promyelocytic leukemia cell line by succinoyl trehalose lipids. Cytotechnology. 2000; 33(1−3):259-64.
  78. Zaragoza A, Teruel JA, Aranda FJ, Marques A, Espuny MJ, Manresa A, et al. Interaction of a Rhodococcus sp. trehalose lipid biosurfactant with model proteins: thermodynamic and structural changes. Langmuir. 2012; 28(2):1381-90. https://doi.org/10.1021/la203879t
  79. Zaragoza A, Teruel JA, Aranda FJ, Ortiz A. Interaction of a trehalose lipid biosurfactant produced by Rhodococcus erythropolis 51T7 with a secretory phospholipase A2. J Colloid Interface Sci. 2013; 408:132-7. https://doi.org/10.1016/j.jcis.2013.06.073
  80. Zaragoza A, Aranda FJ, Espuny MJ, Teruel JA, Marques A, Manresa A, et al. Hemolytic activity of a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp.: evidence for a colloid-osmotic mechanism. Langmuir. 2010; 26(11):8567-72. https://doi.org/10.1021/la904637k
  81. Giri SS, Sen SS, Jun JW, Sukumaran V, Park SC. Role of Bacillus subtilis VSG4-derived biosurfactant in mediating immune responses in Labeo rohita. Fish Shellfish Immunol. 2016; 54:220-9. https://doi.org/10.1016/j.fsi.2016.04.004
  82. Giri SS, Sen SS, Jun JW, Sukumaran V, Park SC. Role of Bacillus licheniformis VS16-derived biosurfactant in mediating immune responses in Carp Rohu and its application to the food industry. Front Microbiol. 2017; 8:514. https://doi.org/10.3389/fmicb.2017.00514
  83. Gerstel U, Czapp M, Bartels J, Schröder JM. Rhamnolipid-induced shedding of flagellin from Pseudomonas aeruginosa provokes hBD-2 and IL-8 response in human keratinocytes. Cell Microbiol. 2009; 11(5):842-53. https://doi.org/10.1111/j.1462-5822.2009.01299.x
  84. Dössel J, Meyer-Hoffert U, Schröder JM, Gerstel U. Pseudomonas aeruginosa-derived rham no lipids subvert the host innate immune response through manipulation of the human beta-defensin-2 expression. Cell Microbiol. 2012; 14(9):1364-75. https://doi.org/10.1111/j.1462-5822.2012.01801.x
  85. Pirog T, Leonova N, Shevchuk T, Savenko I, Iutinska H. [Synthesis of phytohormones bacteria of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017 and Nocardia vaccinii IMV B-7405 - producers of surface-active substances]. Proceedings of the National Academy of Sciences of Belarus. Biological series, 2017; 1:90-5. Russian.
  86. Pirog TP, Havrylkina DV, Leonova NO, Shevchuk TA, Iutynska GO. [Synthesis of biologically active gibberellins GA4 and GA7 by microorganisms]. Mikrobiol Z. 2019; 81(2):90−109. Ukrainian. https://doi.org/10.15407/microbiolj81.02.090