Mikrobiol. Z. 2020; 82(3):71-84.
doi: https://doi.org/10.15407/microbiolj82.03.071

Bacteriocins of Some Groups of Gram-Negative Bacteria

O.I. Balko, O.B. Balko, L.V. Avdeeva

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

The results of Gram-negative bacteria bacteriocins research have been analyzed. These killer factors are characterized by powerful antimicrobial activity, narrowly directed spectrum of action and safety for the macroorganism. Bacteriocins, especially produced by Gram-negative bacteria, are investigated very differentially and, in most cases, insufficiently, the available information is not systematized. The present article focused on bacteriocins, which are active against phytopathogenic bacteria and can be used in crop production as independent biocontrol agents, as well as on the killer factors of marine microorganisms, which application in aquaculture is allowed only with their producer-strains.

Keywords: bacteriocins, phytopathogenic bacteria, crop production, marine microorganisms, aquaculture.

Full text (PDF, in English)

  1. Riley MA, Chavan M. Bacteriocins: ecology and evolution. Berlin; Heidelberg: Springer-Verlag; 2007. https://doi.org/10.1007/978-3-540-36604-1
  2. Montesinos E. Antimicrobial peptides and plant disease control. FEMS Microbiol Lett. 2007; 270:1–11. https://doi.org/10.1111/j.1574-6968.2007.00683.x
  3. Gillor O, Nigro LM, Riley MA. Genetically engineered bacteriocins and their potential as the next generation of antimicrobials. Curr Pharm Des. 2005; 11(8):1067–1075. https://doi.org/10.2174/1381612053381666
  4. Balko AB. [Characteristic, properties, prospect of application of bacteriocins]. Mikrobiol Z. 2012; 74(6):99–106. Russian.
  5. Yang S-C, Lin C-H, Sung CT, Fang J-Y. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol. 2014; 5:241. https://doi.org/10.3389/fmicb.2014.00241
  6. Ghequire MGK, De Mot R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev. 2014; 38:38523–38568. https://doi.org/10.1111/1574-6976.12079
  7. Gillor O, Etzion A, Riley MA. The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol. 2008; 81:591–606. https://doi.org/10.1007/s00253-008-1726-5
  8. Braun V, Pilsl H, Gross P. Colicins: structures, modes of action, transfer through membranes and evolution. Arch Microbiol. 1994; 161(3):199–206. https://doi.org/10.1007/BF00248693
  9. Riley MA. Molecular mechanisms of bacteriocin evolution. Annu Rev Genet. 1998; 32:255–278. https://doi.org/10.1146/annurev.genet.32.1.255
  10. Riley MA, Wertz JE. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie. 2002; 84(5):357–364. https://doi.org/10.1016/S0300-9084(02)01421-9
  11. Michel-Briand Y, Baysse C. The pyocins of Pseudomonas aeruginosa. Biochimie. 2002; 84(5):499–510. https://doi.org/10.1016/S0300-9084(02)01422-0
  12. Nakayama K, Takashima K, Ishihara H, et. al. The R–type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F–type is related to lambda phage. Mol Microbiol. 2000; 38(2):213–231. https://doi.org/10.1046/j.1365-2958.2000.02135.x
  13. Balko OI, Balko AB, Avdeeva LV. [Biofilm forming capacity and bacteriocynogenity in Pseudomonas aeruginosa]. In: Mokienko AV, Pushkina VA, Gozhenko AI, editors. Biofilms of hospital ecosystems: condition, problems and modern approaches to its solve. Odessa: TOV VNP Interservise; 2014. p. 247–311. Russian.
  14. Balko OB. Low molecular weight Pseudomonas aeruginosa bacteriocins. Mikrobiol Z. 2019; 81(6):97–109. https://doi.org/10.15407/microbiolj81.06.097
  15. Balko AB, Avdeeva LV. [Screening of producers of bacteriocin-like substances active against Pseudomonas aeruginosa]. Mikrobiol Z. 2012; 74(2):8–13. Russian.
  16. Tovkach FI. Biological properties and classification of Erwinia carotovora bacteriocins. Microbiology. 1998; (67)6:636–642.
  17. Tovkach FI, Maksimenko LO, Balko OB. [The multiplicity of bacteriocins of Erwinia carotovora]. Visn Nation Agroecol Univ. 2005; 2:163–168. Ukrainian.
  18. Maksimenko LO, Balko OI, Balko OB. Pectobacterium carotovorum subsp. carotovorum low-molecular-weight carotovoricins. Microbiology & Biotechnology. 2017; 3(39):75–83. https://doi.org/10.18524/2307-4663.2017.3(39).110912
  19. Desriac F, Defer D, Bourgougnon N, et al. Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Marine Drugs. 2010; 8(4):1153–1177. https://doi.org/10.3390/md8041153
  20. Holtsmark I, Eijsink VGH, Brurberg MB. Bacteriocins from plant pathogenic bacteria. FEMS Microbiol Lett. 2008; 280:1–7. https://doi.org/10.1111/j.1574-6968.2007.01010.x
  21. Dicks LMT, Dreyer L, Smith C, van Staden AD. A review: the fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut–blood barrier? Front Microbiol. 2018; 9:2297. https://doi.org/10.3389/fmicb.2018.02297
  22. Joerger RD. Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poultry Science. 2003; 82:640–647. https://doi.org/10.1093/ps/82.4.640
  23. Silva CCG, Silva SPM, Ribeiro SC. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front Microbiol. 2018; 9:594. https://doi.org/10.3389/fmicb.2018.00594
  24. Hols P, Ledesma-García L, Gabant P, Mignolet J. Mobilization of Microbiota Commensals and Their Bacteriocins for Therapeutics. Trends Microbiol. 2019; 27(8):690–702. https://doi.org/10.1016/j.tim.2019.03.007
  25. Hahn-Löbmann S, Stephan A, Schulz S, Schneider T, Shaverskyi A, et. al. Colicins and salmocins - New classes of plant-made non-antibiotic food antibacterials. Front. Plant Sci. 2019; 10:437. https://doi.org/10.3389/fpls.2019.00437
  26. Mathur H, Field D, Rea MC, et. al. Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Front Microbiol. 2017; 8:1205. https://doi.org/10.3389/fmicb.2017.01205
  27. Tovkach FI., Balko AB. [Structural and morphological organization of basal plates of deficient bacteriophages of Erwinia carotovora]. Visn Taras Shevchenko Nation Univer Kyiv. 2005; 44:38–39. Ukrainian.
  28. Guliy OI, Bunin VD, Balko AB, et al. Effect of sulfonamides on the electrophysical properties of bacterial cells. Anti-Infective Agents. 2014; 12(2):191–197. https://doi.org/10.2174/2211352512666140630171501
  29. Guliy OI, Zaitsev BD, Kuznetsova IE, et al. Application of the method of electro-acoustical analysis for the detection of bacteriophages in a liquid phase. Biophysics. 2016; 61(1):52–58. https://doi.org/10.1134/S0006350916010097
  30. Guliy OI, Bunin VD, Larionova OS, et al. [Change of electrophysical properties of Escherichia coli cells due to levomycetin and tetracycline action]. Antibiotics and Chemotherapy. 2016; 61(1–2):3–8. Russian.
  31. Krylov VN. [Phage therapy in terms of bacteriophage genetics: Hopes, perspectives, safety, limitations]. Genetika. 2001; 37(7):869–887. Russian. https://doi.org/10.1023/A:1016716606135
  32. Lopetuso LR, Giorgio ME, Saviano A, Scaldaferri F, Gasbarrini A, Cammarota G. Bacteriocins and Bacteriophages: Therapeutic Weapons for Gastrointestinal Diseases? Int J Mol Sci. 2019; 20(1):E183. https://doi.org/10.3390/ijms20010183
  33. Meade E, Slattery MA, Garvey M. Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics (Basel). 2020; 9(1):E32. https://doi.org/10.3390/antibiotics9010032
  34. Ghodhbane H, Elaidi S, Sabatier JM, Achour S, Benhmida J, Regaya I. Bacteriocins Active Against Multi-Resistant Gram-Negative Bacteria Implicated in Nosocomial Infections. Infect Disord Drug Targets. 2015; 15(1):2–12. https://doi.org/10.2174/1871526514666140522113337
  35. Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents. 2017; 49(1):1–11. https://doi.org/10.1016/j.ijantimicag.2016.08.016
  36. Rather IA, Galope R, Bajpai VK, Lim J, Paek WK, Park Y-H. Diversity of Marine Bacteria and Their Bacteriocins: Applications in Aquaculture. Rev Fish Sci Aquacult. 2017; 25(4):257–269. https://doi.org/10.1080/23308249.2017.1282417
  37. Balko OB. [Structural and functional organization of carotovoricins and their role in bacterial antagonism]: The candidate degree thesis by speciality 03.00.06 Kyiv, 2007. Ukrainian.
  38. Sano Y, Matsui H, Kobayashi M, Kageyama M. Molecular structures and functions of pyocins S1 and S2 in Pseudomonas aeruginosa. J Bacteriol. 1993; 175(10):2907–2916. https://doi.org/10.1128/JB.175.10.2907-2916.1993
  39. Duquesne S, Destoumieux-Garzon D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep. 2007; 24:708–734. https://doi.org/10.1039/b516237h
  40. Duquesne S, Petit V, Peduzzi J, Rebuffat S. Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria. J Mol Microb Biotech. 2007; 13:200–209. https://doi.org/10.1159/000104748
  41. Tan S, Moore G, Nodwell J. Put a bow on it: Knotted antibiotics take center stage. Antibiotics. 2019; 8(3):117. https://doi.org/10.3390/antibiotics8030117
  42. Pons AM, Lanneluc I, Cottenceau G, Sable S. New developments in non-post translationally modified microcins. Biochimie. 2002; 84(6):531–537. https://doi.org/10.1016/S0300-9084(02)01416-5
  43. Parks WM, Bottrill AR, Pierrat OA, et. al. The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie. 2007; 89:500–507. https://doi.org/10.1016/j.biochi.2006.12.005
  44. Balko OI, Balko OB, Avdeeva LV. Thermoactivation of Pseudomonas aeruginosa pyocins. Mikrobiol Z. 2019; 81(5):85–97. https://doi.org/10.15407/microbiolj81.05.085
  45. Gvosdyak RI, Pasichnik LA, Yakovleva LM, Moroz SM, Litvinchuk OO, et. al. [Phytopathogenic bacteria. Bacterial diseases of plants]. Kyiv: SPE Interservice; 2011. Ukrainian.
  46. Lavermicocca P, Lonigro SL, Valerio F, et. al. Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei. Appl Environ Microbiol. 2002; 68(3):1403–1407. https://doi.org/10.1128/AEM.68.3.1403-1407.2002
  47. McManus PS, Stockwell VO, Sundin GW, Jones AL. Antibiotic use in plant agriculture. Annu Rev Phytopathol. 2002; 40:443–465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
  48. Subramanian S, Smith DL. Bacteriocins from the rhizosphere microbiome – from an agriculture perspective. Front Plant Sci. 2015; 6:909. https://doi.org/10.3389/fpls.2015.00909
  49. Balko OB, Tovkach FI. [Endonuclease activity ssociated with the bacteriocin particles of Erwinia carotovora]. Nauk Visn Chernivetsk Univer. 2006; 297:132–136. Ukrainian.
  50. Pat. 120295 UA, A01N 25/00, C12R 1/38, C12R 1/385, C12N 1/20. [A method of plant protection from bacterial disease agent Pseudomonas syringae]. Balko OB, Balko OI, Zelena LB, Pasichnik LA, Avdeeva LV. Publ. 11.11.2019, Bull. N 21. Ukrainian.
  51. Parret AHA, Schoofs G, Proost P, de Mot R. Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J Bacteriol. 2003; 185(3):897–908. https://doi.org/10.1128/JB.185.3.897-908.2003
  52. Lenski RE, Riley MA. Chemical warfare from an ecological perspective. PNAS USA. 2002; 99:556–558. https://doi.org/10.1073/pnas.022641999
  53. Ghequire MG, Dillen Y, Lambrichts I, Proost P, Wattiez R, De Mot R. Different ancestries of R tailocins in rhizospheric Pseudomonas isolates. Genome Biol Evol. 2015; 7(10):2810–2828. https://doi.org/10.1093/gbe/evv184
  54. Rooney WM, Grinter RW, Correia A, Parkhill J, Walker DC, Milner JJ. Engineering bacteriocin-mediated resistance against the plant pathogen Pseudomonas syringae. Plant Biotechnol J. 2019. https://doi.org/10.1101/649178
  55. Balko OI, Yaroshenko LV, Balko OB, Pasichnyk LA, Avdeeva LV. [Pseudomonas aeruginosa bacteriocin activity against Pseudomonas syringae phytopathogenic strains]. Microbiology and biotechnology. 2017; 2:51–60. Ukrainian. https://doi.org/10.18524/2307-4663.2017.2(38).105017
  56. Feil H, Feil WS, Chain P, et al. Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. PNAS USA. 2005; 102:11064–11069. https://doi.org/10.1073/pnas.0504930102
  57. Balko AB, Vidasov VV, Avdeeva LV. [Optimization of Pseudomonas aeruginosa bacteriocin induction]. Microbiol Z. 2013;75(1):79–85. Russian.
  58. Paškevičius Š, Starkevič U, Misiūnas A, Vitkauskienė A, Gleba Y, Ražanskienė A. Plant-expressed pyocins for control of Pseudomonas aeruginosa. PLoS One. 2017; 12(10):e0185782. https://doi.org/10.1371/journal.pone.0185782
  59. Kairu GM. Biochemical and pathogenic differences between Kenyan and Brazilian isolates of Pseudomonas syringae pv. garcae. Plant Pathol. 1997; 46:239–246. https://doi.org/10.1046/j.1365-3059.1997.d01-218.x
  60. Parret AHA, Temmerman K, De Mot R. Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Appl Environ Microbiol. 2005; 71:5197–5207. https://doi.org/10.1128/AEM.71.9.5197-5207.2005
  61. Bloemberg G, Lugtenberg B. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol. 2001; 4:343–350. https://doi.org/10.1016/S1369-5266(00)00183-7
  62. Abhilash PC, Dubey RK, Tripathi V, Gupta VK, Singh HB. Plant Growth-Promoting Microorganisms for Environmental Sustainability. Trends Biotechnol. 2016; 34(11):847–850. https://doi.org/10.1016/j.tibtech.2016.05.005
  63. Príncipe A, Fernandez M, Torasso M, Godino A, Fischer S. Effectiveness of tailocins produced by Pseudomonas fluorescens SF4c in controlling the bacterial-spot disease in tomatoes caused by Xanthomonas vesicatoria. Microbiol Res. 2018; 212–213:94–102. https://doi.org/10.1016/j.micres.2018.05.010
  64. Jabrane A, Sabri A, Compre P, et. al. Characterization of serracin P, a phage-tail-like bacteriocin, and its activity against Erwinia amylovora, the fire blight pathogen. Appl Environ Microbiol. 2002; 68(11):5704–5710. https://doi.org/10.1128/AEM.68.11.5704-5710.2002
  65. Kearns LP, Mahanty HK. Antibiotic production by Erwinia herbicola Eh1087: its role in inhibition of Erwinia amylovora and partial characterization of antibiotic biosynthesis genes. Appl Environ Microbiol. 1998; 64(5):1837–1844. https://doi.org/10.1128/AEM.64.5.1837-1844.1998
  66. Hurst MRH, Glare TR, Jackson TA. Cloning Serratia entomophila antifeeding genes – a putative defective prophage active against the grass grub Costelytra zealandica. J Bacteriol. 2004; 186(15):5116–5128. https://doi.org/10.1128/JB.186.15.5116-5128.2004
  67. Toth IK, Bell KS, Holeva MC, Birch PRJ. Soft rot erwiniae: from genes to genomes. Mol Plant Pathol. 2003; 4(1):17–30. https://doi.org/10.1046/j.1364-3703.2003.00149.x
  68. Tovkach FI. [Relation between macromolecular carotovoricin lysing activity and bacteriocinsensitivity in E. carotovora]. Microbiology. 1998; 67(6):775–781. Russian.
  69. Tovkach FI. [Defective lysogeny in Erwinia carotovora]. Microbiology. 2002; 71(3):359–367. Russian. https://doi.org/10.1023/A:1017902400818
  70. Tovkach FI, Mukvich NS, Balko AB. [Peculiarities of lysogenic induction of bacteriocins in thymine mutants of Erwinia carotovora]. Mikrobiol Z. 2006; 68(3):33–46. Russian.
  71. Chuang DY, Chien YC, Wu HP. Cloning and expression of the Erwinia carotovora subsp. carotovora gene encoding the low-molecular-weight bacteriocin, carocin S1. J Bacteriol. 2007; 189:620–626. https://doi.org/10.1128/JB.01090-06
  72. Vanneste JL, Cornish DA, Yu J, Voyle MD. A microcin produced by a strain of Erwinia herbicola is involved in biological control of fire blight and soft rot caused by Erwinia sp. XXV International Horticultural Congress. Acta Hort. (ISHS) 513. 1998. p. 39–46. https://doi.org/10.17660/ActaHortic.1998.513.3
  73. Shyntum DY, Nkomo NP, Shingange NL, Gricia AR, Bellieny-Rabelo D, Moleleki LN. The Impact of Type VI Secretion System, Bacteriocins and Antibiotics on Bacterial Competition of Pectobacterium carotovorum subsp. brasiliense and the Regulation of Carbapenem Biosynthesis by Iron and the Ferric-Uptake Regulator. Front Microbiol. 2019; 10:2379–2403. https://doi.org/10.3389/fmicb.2019.02379
  74. Nguyen HA, Tomita T, Hirota M, et. al. DNA inversion in the tail fiber gene alters the host range specificity of carotovoricin Er, a phage-tail-like bacteriocin of phytopathogenic Erwinia carotovora subsp. carotovora. Er J Bacteriol. 2001; 183:6274–6281. https://doi.org/10.1128/JB.183.21.6274-6281.2001
  75. Heu S, Oh J, Kang Y, et al. Gly gene cloning and expression and purification of glycinecin A, a bacteriocin produced by Xanthomonas campestris pv. glycines 8ra. Appl Environ Microbiol. 2001; 67:4105–4110. https://doi.org/10.1128/AEM.67.9.4105-4110.2001
  76. Pham HT, Riu KZ, Jang KM, et. al. Bactericidal activity of glycinecin A, a bacteriocin derived from Xanthomonas campestris pv. glycines, on phytopathogenic Xanthomonas campestris pv. vesicatoria cells. Appl Environ Microbiol. 2004; 70:4486–4490. https://doi.org/10.1128/AEM.70.8.4486-4490.2004
  77. Sakthivel N, Mew TW. Efficacy of bacteriocinogenic strains of Xanthomonas oryzae pv. oryzae on the incidence of bacterial-blight disease of rice (Oryza-sativa L). Can J Microbiol. 1991; 37:764–768. https://doi.org/10.1139/m91-131
  78. Hert AP, Roberts PD, Momol MT, et al. Relative importance of bacteriocin-like genes in antagonism of Xanthomonas perforans tomato race 3 to Xanthomonas euvesicatoria tomato race 1 strains 259. Appl Environ Microbiol. 2005; 71:3581–3588. https://doi.org/10.1128/AEM.71.7.3581-3588.2005
  79. Oresnik IJ, Twelker S, Hynes MF. Cloning and characterization of a Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxins. Appl Environ Microbiol. 1999; 65:2833–2840. https://doi.org/10.1128/AEM.65.7.2833-2840.1999
  80. Stephan A, Hahn-Löbmann S, Rosche F, et al. Simple purification of Nicotiana benthamiana-produced recombinant colicins: high-yield recovery of purified proteins with minimum alkaloid content supports the suitability of the host for manufacturing food additives. Int J Mol Sci. 2017; 19(1):E95. https://doi.org/10.3390/ijms19010095
  81. FAO. Aquaculture topics and activities. Aquaculture. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 14 September 2015.
  82. Kurath G. Biotechnology and DNA vaccines for aquatic animals. REV SCI TECH OIE. 2008; 27:175–196. https://doi.org/10.20506/rst.27.1.1793
  83. Austin B, Zhang XH. Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol. 2006; 43:119–124. https://doi.org/10.1111/j.1472-765X.2006.01989.x
  84. Marcogliese D. The impact of climate change on the parasites and infectious diseases of aquatic animals. REV SCI TECH OIE. 2008; 27:467–484. https://doi.org/10.20506/rst.27.2.1820
  85. Zhou Q, Li K, Jun X, Bo L. Role and functions of beneficial microorganisms in sustainable aquaculture. Bioresour Technol. 2009; 100:3780–3786. https://doi.org/10.1016/j.biortech.2008.12.037
  86. Prakashwadekar B, Dharmadhikari SM. Screening of marine microorganisms as probiotics for production of bacteriocin. Intern J Develop Res. 2016; 6(10):9734–9738.
  87. Wilson GS, Raftos DA, Corrigan SL, Nair SV. Diversity and antimicrobial activities of surface-attached marine bacteria from Sydney Harbour, Australia. Microbiol Res. 2010; 165(4):300–311. https://doi.org/10.1016/j.micres.2009.05.007
  88. Feliatra F, Muchlisin ZA, Teruna HY, Utamy WR, Nursyirwani N, Dahliaty A. Potential of bacteriocins produced by probiotic bacteria isolated from tiger shrimp and prawns as antibacterial to Vibrio, Pseudomonas, and Aeromonas species on fish. F1000Res. 2018; 7:415–434. https://doi.org/10.12688/f1000research.13958.1
  89. Schmidt EW, Nelson JT, Rasko DA, et. al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci. USA. 2005; 102(20):7315–7320. https://doi.org/10.1073/pnas.0501424102
  90. Reid G, Sanders ME, Gaskins HR, et. al. New Scientific Paradigms for Probiotics and Prebiotics. J Clin Gastroenterol. 2003; 37:105–118. https://doi.org/10.1097/00004836-200308000-00004
  91. Jorquera MA, Silva FR, Riquelme CE. Bacteria in the culture of the scallop Argopecten purpuratus (Lamarck, 1819). Aquaculture Int. 2001; 9:285–303. https://doi.org/10.1023/A:1020449324456
  92. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev. 2000; 64:655–671. https://doi.org/10.1128/MMBR.64.4.655-671.2000
  93. Sahu M, Swarnakumar N, Sivakumar K, et. al. Probiotics in aquaculture: importance and future perspectives. Indian J Microbiol. 2008; 48:299–308. https://doi.org/10.1007/s12088-008-0024-3
  94. Das S, Ward L, Burke C. Prospects of using marine actinobacteria as probiotics in aquaculture. Appl Microbiol Biotechnol. 2008; 81:419–429. https://doi.org/10.1007/s00253-008-1731-8
  95. Wang Y-B, Li J-R, Lin J. Probiotics in aquaculture: Challenges and outlook. Aquaculture. 2008; 281:1–4. https://doi.org/10.1016/j.aquaculture.2008.06.002
  96. Said LB, Gaudreau H, Dallaire L, Tessier M, Fliss I. Bioprotective Culture: A New Generation of Food Additives for the Preservation of Food Quality and Safety. Industr Biotechnol. 2019; 15(3):138–147. https://doi.org/10.1089/ind.2019.29175.lbs
  97. Lim KB, Balolong MP, Kim SH, Oh JK, Lee JY, Kang DK. Isolation and Characterization of a Broad Spectrum Bacteriocin from Bacillus amyloliquefaciens RX7. Biomed Res Int. 2016; 2016:8521476. https://doi.org/10.1155/2016/8521476
  98. Ahmad A, Hamid R, Dada AC, Usup G. Pseudomonas putida strain isolated from shark skin: A potential source of bacteriocin. Probiotics Antimicrob Proteins. 2013; 5(3):165–175. https://doi.org/10.1007/s12602-013-9140-4
  99. Morris JJÂG. Cholera and Other Types of Vibriosis: A Story of Human Pandemics and Oysters on the Half Shell. Clin Infect Dis. 2003; 37:272–280. https://doi.org/10.1086/375600
  100. Zai AS, Ahmad S, Rasool SA. Bacteriocin production by indigenous marine catfish associated Vibrio spp. Pak J Pharm Sci . 2009; 22:162–167.
  101. Carraturo A, Raieta K, Ottaviani D, Russo GL. Inhibition of Vibrio parahaemolyticus by a bacteriocin-like inhibitory substance (BLIS) produced by Vibrio mediterranei 1. J Appl Microbiol. 2006; 101:234–241. https://doi.org/10.1111/j.1365-2672.2006.02909.x
  102. Prasad S, Morris PC, Hansen R, et. al. A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi. Microbiology. 2005; 151:3051–3058. https://doi.org/10.1099/mic.0.28011-0
  103. Zhang X-H, Austin B. Pathogenicity of Vibrio harveyi to salmonids. J Fish Dis. 2000; 23:93–102. https://doi.org/10.1046/j.1365-2761.2000.00214.x
  104. Shehane SD, Sizemore RK. Isolation and preliminary characterization of bacteriocins produced by Vibrio vulnificus. J Appl Microbiol. 2002; 92:322–328. https://doi.org/10.1046/j.1365-2672.2002.01533.x
  105. Sugita H, Matsuo N, Hirose Y, et. al. Vibrio sp. strain NM 10, isolated from the intestine of a Japanese coastal fish, has an inhibitory effect against Pasteurella piscicida. Appl Environ Microbiol. 1997; 63:4986–4989. https://doi.org/10.1128/AEM.63.12.4986-4989.1997
  106. Messi P, Guerrieri E, Bondi M. Bacteriocin-like substance (BLIS) production in Aeromonas hydrophila water isolates. FEMS Microbiol Lett. 2003; 220:121–125. https://doi.org/10.1016/S0378-1097(03)00092-2
  107. Longeon A, Peduzzi J, Barthelemy M, et. al. Purification and Partial Identification of Novel Antimicrobial Protein from Marine Bacterium Pseudoalteromonas Species Strain X153. Mar Biotechnol. 2004; 6:633–641. https://doi.org/10.1007/s10126-004-3009-1
  108. Ruiz-Ponte C, Samain JF, Sànchez JL, Nicolas JL. The Benefit of a Roseobacter Species on the Survival of Scallop Larvae. Mar Biotechnol. 1999; 1:52–59. https://doi.org/10.1007/PL00011751
  109. Balko OI, Avdeeva LV, Balko OB. Depositary Function of Pseudomonas aeruginosa Biofilm on Media with Different Carbon Source Concentration. Mikrobiol Z. 2018; 80(6):15–27. https://doi.org/10.15407/microbiolj80.06.015
  110. Laxmi M, Kurian NK, Smitha S, Bhat SG. Melanin and bacteriocin from marine bacteria inhibit biofilms of foodborne pathogens. Ind J Biotech. 2016; 15(3): 392–399.
  111. Savchenko DS, Balko OB, Balko OI, Avdieyeva LV, Yaroshenko LV, Chekman IS, Voronin YaP. [Effect of nanocomposite highly dispersed silica with silver nanoparticles on biofilm and plankton forms of Pseudomonas aeruginosa UKM B-1]. Pharm review. 2013; 27(3):35–40. Ukrainian.
  112. Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control. 2019; 8:76–86. https://doi.org/10.1186/s13756-019-0533-3
  113. Pisarenko PO, Balko OB. [Impact of cultivation conditions on emission rates of bacteriocin-like substances Pseudomonas aeruginosa within biofilm]. Scientific works of NUFT. 2013; 50:51–54. Ukrainian.
  114. Balko AB, Avdeeva LV. [Influence of temperature factor on peculiarities of Pseudomonas aeruginosa biofilm formation]. Medicine today and tomorrow. 2009; 3–4:23–27. Ukrainian.
  115. Balko AB, Avdeeva LV. [Structural components and peculiarities of Pseudomonas aeruginosa biofilm organization]. Mikrobiol Z. 2010; 72(4):28–33. Ukrainian.
  116. Balko OI, Avdeeva LV, Balko OB. [Stages of Pseudomonas aeruginosa biofilm formation]. Ukrain Food J. 2013; 2(1):23–26. Ukrainian.
  117. Balko AB, Balko OI, Avdeeva LV. [Biofilm formation by Pseudomonas aeruginosa strains of Ukrainian collection of microorganisms]. Mikrobiol Z. 2013; 75(2):50–56. Russian.
  118. Balko OI, Balko OB, Yaroshenko LV, Skorik MA, Avdeeva LV. [Resistance of Pseudomonas aeruginosa UCM B-1 population to silver nanoparticles at early stages of biofilm formation]. Mikrobiol Z. 2017; 79(6):71–81. Ukrainian. https://doi.org/10.15407/microbiolj79.06.071
  119. Pat. 89508 UA, MPK C12Q 1/24 Method of viable microorganisms quantity definition in the biofilm composition. Balko OI, Balko AB, Avdeeva LV. Publ. 25.04.14, Bull. N 8.
  120. Pat. 89509 UA, MPK C12Q 1/24 Method of biofilm forming capacity definition in microorganisms. Balko OI, Balko AB, Avdeeva LV. Publ. 25.04.14, Bull. N 8.