Mikrobiol. Z. 2020; 82(2):67-81. Ukrainian.
doi: https://doi.org/10.15407/microbiolj82.02.067

Biosynthesis of Surfactants by Actinobacteria of Rhodococcus Genus

T.P. Pirog1,2, B.S. Heichenko1, T.A. Shevchuk2, F.V. Muchnyk2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Market interest to the Rhodococcus genus bacteria is due to the unique properties of their metabolism, in particular, the ability to destroy many xenobiotics, which often occurs with а participation of glycolipid nature surfactants synthesized by these actinobacteria. The review presents recent literature data and the results of own experimental studies concerning formation of surfactants under cultivation of Rhodococcus on traditional hydrocarbons (n-alkanes, crude oil, kerosene, diesel fuel), other hydrophobic (refined oils) and hydrophilic (glycerol, ethanol, carbohydrates) mono- and mixed substrates, as well as industrial wastes (fried oil, waste of biodiesel production). The largest number of publications relates to the synthesis of surfactants by these actinobacteria on hydrocarbons, while information about using oil and hydrophilic substrates, as well as industrial waste for the formation of surfactants, is limited. Optimization of producers cultivation conditions, including the use of mathematical methods, mutant and genetically engineered strains allowed to increase synthesizing ability of Rhodococcus genus representatives on different substrates to the level of highly active producers of other surface-active glycolipids (rhamno- and sophorolipids).

Keywords: Rhodococcus, intensification of surfactants synthesis, hydrophilic and hydrophobic substrates, industrial waste.

Full text (PDF, in Ukrainian)

  1. Pirog TP, Shulyakova MO, Shevchuk TA, Sofylkanich AP. [Biotechnological potential of bacteria of Rhodococcus strain and their metabolites]. Biotechnology. 2012; 5(2):51−67. Ukrainian.
  2. Rapp P, Bock H, Wray V, Wagner F. Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J Gen Microbiol. 1979; 115(2):491-503. https://doi.org/10.1099/00221287-115-2-491
  3. Uchida Y, Misawa S, NakaharaT, Tabuchi T. Factors affecting the production of succinoyl trehalose lipids by Rhodococcus erythropolis SD-74 grown on n-alkanes. Agricultural Biol Chem. 1989; 53(3):765-9. https://doi.org/10.1271/bbb1961.53.765
  4. Uchida Y, Tsuchiya R, Chino M. Extracellular accumulation of mono- and di-succinoyl trehalose lipids by a strain of Rhodococcus erythropolis grown on n-alkanes. Agricultural Biol Chem. 1989; 53(3):757-63. https://doi.org/10.1271/bbb1961.53.757
  5. Singer ME, Finnerty WR. Physiology of biosurfactant synthesis by Rhodococcus species H13-A. Can J Microbiol. 1990; 36(11):741-5. https://doi.org/10.1139/m90-127
  6. Li C, Zhou ZX, Jia XQ, Chen Y, Liu J, Wen JP. Biodegradation of crude oil by a newly isolated strain Rhodococcus sp. JZX-01. Appl Biochem Biotechnol. 2013; 171(7):1715-25. https://doi.org/10.1007/s12010-013-0451-4
  7. Kumari B, Singh SN, Singh DP. Characterization of two biosurfactant producing strains in crude oil degradation. Process Biochem. 2012; 47(12):2463-71. https://doi.org/10.1016/j.procbio.2012.10.010
  8. Petrikov K, Delegan Y, Surin A, Ponamoreva O, Puntus I, Filonov A, et al. Glycolipids of Pseudomonas and Rhodococcus oil-degrading bacteria used in bioremediation preparations: formation and structure. Process Biochem. 2013; 48(5−6):931-35. https://doi.org/10.1016/j.procbio.2013.04.008
  9. Nechaeva IA, Luong TM, Satina VE, Ponamoreva ON. [Influence of the physiological characteristics of the bacteria genus Rhodococcus on the degradation n-hexadecane]. Proceedings Tula State University. Series: Natural Sciences. 2016; 1:90−8. Russian.
  10. Lee DW, Lee H, Kwon BO, Khim JS, Yim UH, Kim BS, et al. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environ Pollut. 2018; 241:254-64. https://doi.org/10.1016/j.envpol.2018.05.070
  11. Luong TM, Ponamoreva ON, Nechaeva IA, Petrikov KV, Delegan YA, Surin AK, et al. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature. World J Microbiol Biotechnol. 2018; 34(2):20. https://doi.org/10.1007/s11274-017-2401-8
  12. Ramananthan K. Enhancement of hydrocarbon degradation using biosurfactants from Rhodococcus species in a membrane reactor system. Thesis for the degree of Doctor of Philosophy. Heriot-Watt University, Edinburgh, 2014.
  13. Kazemi K, Zhang B, Lye ML. Production of biosurfactant by Rhodococcus erythropolis sp. cultivated in a novel fish waste compost extract substrate. In: Proceeding of Annual Conference of the Canadian Society for Civil Engineering; 2016 June 1−4; London, Canada: London, 2016.
  14. Bages-Estopa S, White DA, Winterburn JB, Webb C, Martin PJ. Production and separation of a trehalolipid biosurfactant. Biochem Eng J. 2018; 139:85−94. https://doi.org/10.1016/j.bej.2018.07.006
  15. Koretska N, Prystai M, Karpenko O. [Biosynthesis and properties of surfactants of Rhodococcus erythropolis Au-1 strain]. Visnyk (Official Gazette) of Lviv Polytechnic National University. Series: Chemistry, Materials Technology and Application. 2014; 787:258-63. Ukrainian.
  16. Shulga A, Shcheglova N, Vildanova R. [Influence of potassium alum on the synthesis of microbial surface-active compounds]. Microbiol Biotechnol. 2014; 1:85−93. Russian. https://doi.org/10.18524/2307-4663.2014.2(26).48276
  17. Xia W, Dong H, Yu L, Yu D. Comparative study of biosurfactant produced by microorganisms isolated from formation water of petroleum reservoir. Colloids Surf A: Physicochem Eng Aspects. 2011; 392(1):124-30. https://doi.org/10.1016/j.colsurfa.2011.09.044
  18. Zheng C, Yu L, Huang L, Xiu J, Huang Z. Investigation of a hydrocarbon-degrading strain, Rhodococcus ruber Z25, for the potential of microbial enhanced oil recovery. J Petrol Sci Eng. 2012; 81:49−56. https://doi.org/10.1016/j.petrol.2011.12.019
  19. Lv Z, Cai Q, Zhang B, Chen B. A new high-yielding bio-dispersant producer mutated from Rhodococcus erythropolis strain P6-4P. In: Proceeding of Annual Conference of the Canadian Society for Civil Engineering; 2016 June 1−4; London, Canada: London, 2016.
  20. Cai Q, Zhang B, Chen B, Cao T, Lv Z. Biosurfactant produced by a Rhodococcus erythropolis mutant as an oil spill response agent. Water Qual Res J Can. 2016; 51(2):97-105. https://doi.org/10.2166/wqrjc.2016.025
  21. Inaba T, Tokumoto Y, Miyazaki Y, Inoue N, Maseda H, Nakajima-Kambe T, et al. Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp. strain SD-74. Appl Environ Microbiol. 2013; 79(22):7082−90. https://doi.org/10.1128/AEM.01664-13
  22. Kis ÁE, Laczi K, Zsíros S, Kós P, Tengölics R, Bounedjoum N, et al. Characterization of the Rhodococcus sp. MK1 strain and its pilot application for bioremediation of diesel oil-contaminated soil. Acta Microbiol Immunol Hung. 2017; 64(4):463-82. https://doi.org/10.1556/030.64.2017.037
  23. Vuong Thi Nga, Kieu Quynh Hoa, Tran Dinh Man, Lai Thuy Hien. Medium optimization for biosurfactant production by Rhodococcus ruber TD2 using response surface methodology. TAP CHI SINH HOC. 2014; 36(3):360−6. https://doi.org/10.15625/0866-7160/v36n3.5976
  24. 24. Hien LT, Yen NT, Nga VT. Biosurfactant-producing Rhodococcus ruber TD2 isolated from oil poluted water in vung tau coastal zone. TAP CHI SINH HOC. 2013; 35(4):454-60. https://doi.org/10.15625/0866-7160/v35n4.3775
  25. Gogotov IN, Khodakov RS. Surfactant Production by the Rhodococcus erythropolis sH-5 Bacterium Grown on Various Carbon Sources. Appl Biochem Microbiol. 2008; 44(2):186−91. https://doi.org/10.1134/S0003683808020105
  26. Pirog TP, Shevchuk TA, Klimenko YuA. Intensification of surfactant synthesis in Rhodococcus erythropolis EK-1 cultivated on hexadecane. Appl Biochem Microbiol. 2010; 46(6):599-606. https://doi.org/10.1134/S0003683810060074
  27. Tan YN, Li Q. Microbial production of rhamnolipids using sugars as carbon sources. Microb Cell Fact. 2018; 17(1):89. https://doi.org/10.1186/s12934-018-0938-3
  28. Nurfarahin AH, Mohamed MS, Phang LY. Culture medium development for microbial-derived surfactants production − an overview. Molecules. 2018; 23(5),pii:E1049. https://doi.org/10.3390/molecules23051049
  29. Ebadipour N, Lotfabad TB, Yaghmaei S, RoostaAzad R. Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology. Prep Biochem Biotechnol. 2016; 46(1):30−8. https://doi.org/10.1080/10826068.2014.979204
  30. Almeida DG, Soares da Silva RC, Luna JM, Rufino RD, Santos VA, Sarubbo LA. Response surface methodology for optimizing the production of biosurfactant by Candida tropicalis on industrial waste substrates. Front Microbiol. 2017; 8:157. https://doi.org/10.3389/fmicb.2017.00157
  31. Araújo HWC, Andrade RFS, Montero-Rodríguez D, Rubio-Ribeaux D, Alves da Silva CA, Campos-Takaki GM. Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microb Cell Fact. 2019; 18(1):2. https://doi.org/10.1186/s12934-018-1046-0
  32. Sadouk Z, Hacene H, Tazerouti A. Biosurfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain. Oil Gas Sci Technol - Rev IFP. 2008; 63(6):747-53. https://doi.org/10.2516/ogst:2008037
  33. Ruggeri C, Franzetti A, BestettiG, Caredda P, La Colla P, Pintus M, et al. Isolation and characterization of surface active compound-producing bacteria from hydrocarbon-contaminated environments. Int Biodeter Biodegr. 2009; 63(7):936-42. https://doi.org/10.1016/j.ibiod.2009.05.003
  34. Moussa LA, Abdel Azeiz AZ. Identification and characterization of biosurfactants produced by Rodococcus equi and Bacillus methlyotrophicus. J Biol Chem Environ Sci. 2013; 2(8):341-58.
  35. Suryanti V, Hastuti S, Pujiastuti D. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution. AIP Conference Proceedings. 2016; 1710(1):030016. https://doi.org/10.1063/1.4941482
  36. White D, Hird L, Ali S. Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol. 2013; 115(3):744-55. https://doi.org/10.1111/jam.12287
  37. Koretska N, Prystai M, Karpenko O. Rape phosphatide concentrate in the technologies of surfactants production by the Actinobacteria. Ukrainian Food J. 2014; 3(3):422-29.
  38. Pirog T, Sofilkanych A, ShevchukT, Shulyakova M. Biosurfactants of Rhodococcus erythropolis IMV Ac-5017: synthesis intensification and practical application. Appl Biochem Biotechnol. 2013; 170(4):880−94. https://doi.org/10.1007/s12010-013-0246-7
  39. Pirog T, Sofilkanych A, Konon A, Shevchuk T, Ivanov S. Intensification of surfactants' synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii K-8 on fried oil and glycerol containing medium. Food Bioprod Process. 2013; 91(2):149−57. https://doi.org/10.1016/j.fbp.2013.01.001
  40. Pirog TP, Shevchuk TA, Volishina IN, Karpenko EV. Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates. Appl Biochem Microbiol. 2004; 40(5):470-75. https://doi.org/10.1023/B:ABIM.0000040670.33787.5f
  41. Ciapina EM, Melo WC, Santa Anna LM, Santos AS, Freire DM, Pereira NJr. Biosurfactant production by Rhodococcus erythropolis grown on glycerol as sole carbon source. Appl Biochem Biotechnol. 2006; 131(1−3):880-6.
  42. Pacheco G, Ciapina E, Gomes E, Junior N. Biosurfactant production by Rhodococcus erythropolis and its application to oil removal. Braz J Microbiol. 2010; 41(3):685-93. https://doi.org/10.1590/S1517-83822010000300019
  43. Bajaj A, Mayilraj S, Mudiam MK, Patel DK, Manickam N. Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT). Bioresour Technol. 2014; 167:398−406. https://doi.org/10.1016/j.biortech.2014.06.007
  44. Nazina T, Kostrukova N, Tatarkin Yu, Babich T, Sokolova D, Ivoilov V, et al. [Biogeochemical processes in carbonate oil plasts with different physical and chemical conditions as a basis for the development of biotechnology improvement oil]. Georesources, geoenergy, geopolitics. 2014; 1(9):1-13. Russian.
  45. Vivek N, Sindhu R, Madhavan A, Anju AJ, Castro E, Faraco V, et al. Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate − metabolic aspects, challenges and possibilities: an overview. Bioresour Technol; 239:507−17. https://doi.org/10.1016/j.biortech.2017.05.056
  46. Poblete-Castro I, Wittmann C, Nikel PI. Biochemistry, genetics and biotechnology of glycerol utilization in Pseudomonas species. Microb Biotechnol. 2019. https://doi.org/10.1111/1751-7915.13400
  47. Salazar-Bryam AM, Lovaglio RB, Contiero J. Biodiesel byproduct bioconversion to rhamnolipids: upstream aspects. Heliyon. 2017; 3(6):e00337. https://doi.org/10.1016/j.heliyon.2017.e00337
  48. Etchegaray A, Coutte F, Chataigné G, Béchet M, Dos Santos RH, Leclère V, et al. Production of Bacillus amyloliquefaciens OG and its metabolites in renewable media: valorisation for biodiesel production and p-xylene decontamination. Can J Microbiol. 2017; 63(1):46−60. https://doi.org/10.1139/cjm-2016-0288
  49. Pirog T, Shulyakova M, Sofilkanych A, Shevchuk T, Mashchenko O. Biosurfactant synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 on byproduct of biodiesel production. Food Bioprod Process. 2015; 93:11−8. https://doi.org/10.1016/j.fbp.2013.09.003
  50. Pirog TP, Shevchuk TA, Mashchenko OYu. [The ways of increasing bioconversion of crude glycerol in biosurfactants of Rhodococcus erythropolis IMB Ac-5017, Acinetobacter calcoaceticus IMB B-7241 and Nocardia vaccinii IMB B-7405]. Mikrobiol Z. 2015; 77(1):2−8. Russian. https://doi.org/10.15407/microbiolj77.01.002
  51. Mutalik SR, Vaidya BK, Joshi RM, Desai KM, Nene SN. Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour Technol. 2008; 99(16):7875−80. https://doi.org/10.1016/j.biortech.2008.02.027
  52. Konishi M, Nishi S, Fukuoka T, Kitamoto D, Watsuji TO, Nagano Y, et al. Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant. Mar Biotechnol (NY). 2014; 16(4):484-93. https://doi.org/10.1007/s10126-014-9568-x
  53. Cao T. Generation of biodispersants for offshore oil spill response. Thesis for the degree of Master of Engineering. Memorial University of Newfoundland. Newfoundland, 2015.
  54. Pirog TP, Shulyakova MO, Shevchuk TA. [Mixed substrates in environment and biotechnological processes]. Biotechnologia Acta. 2013; 6(6):28-44. Ukrainian. https://doi.org/10.15407/biotech6.06.028
  55. Ghaly AE, Ramakrishnan VV, Brooks MS, Budge SM, Dave D. Fish processing wastes as a potential source of proteins, amino acids and oils: a critical review. J Microb Biochem Technol. 2013; 5(4):107−29.
  56. Mishra S, Singh SN, Pande V. Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. Bioresour Technol. 2014; 164:299−308. https://doi.org/10.1016/j.biortech.2014.04.076
  57. Hristov AE, Christova NE, Kabaivanova LV, Nacheva LV, Stoineva IB, Petrov PD. Simultaneous biodegradation of phenol and n-hexadecane by cryogel immobilized biosurfactant producing strain Rhodococcus wratislawiensis BN38. Pol J Microbiol. 2016; 65(3):287−93. https://doi.org/10.5604/17331331.1215608
  58. Kundu D, Hazra C, Dandi N, Chaudhari A. Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation. 2013; 24(6):775-93. https://doi.org/10.1007/s10532-013-9627-4
  59. Pirog TP, Shulyakova MO, Nikituk LV, Antonuk SI, Elperin IV. Industrial waste bioconversion into surfactants by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405. Biotechnologia Acta. 2017; 10(2):22−33. https://doi.org/10.15407/biotech10.02.022
  60. Pérez-Armendáriz B, Cal-Y-Mayor-Luna C, El-Kassis EG, Ortega-Martínez LD. Use of waste canola oil as a low-cost substrate for rhamnolipid production using Pseudomonas aeruginosa. AMB Express. 2019; 9(1):61. https://doi.org/10.1186/s13568-019-0784-7
  61. Eraqi WA, Yassin AS, Ali AE, Amin MA. Utilization of crude glycerol as a substrate for the production of rhamnolipid by Pseudomonas aeruginosa. Biotechnol Res Int. 2016; 2016:3464509. https://doi.org/10.1155/2016/3464509
  62. Dang Y, Zhao F, Liu X, Fan X, Huang R, Gao W et al. Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microb Cell Fact. 2019; 18(1):68. https://doi.org/10.1186/s12934-019-1121-1
  63. Ayed HB, Azabou MC, Hmidet N, Triki MA, Nasri M. Economic production and biocontrol efficiency of lipopeptide biosurfactants from Bacillus mojavenis A21. Biodegradation. 2018. https://doi.org/10.1007/s10532-018-9864-7
  64. Zhou G, Tian X, Lin Y, Zhang S, Chu J. Rational high-throughput system for screening of high sophorolipids-producing strains of Candida bombicola. Bioprocess Biosyst Eng. 2019; 42(4):575−82. https://doi.org/10.1007/s00449-018-02062-w
  65. Konishi M, Makino M. Selective production of deacetylated mannosylerythritol lipid, MEL-D, by acetyltransferase disruption mutant of Pseudozyma hubeiensis. J Biosci Bioeng. 2018; 125(1):105−10. https://doi.org/10.1016/j.jbiosc.2017.08.003
  66. Saika A, Koike H, Fukuoka T, Morita T. Tailor-made mannosylerythritol lipids: current state and perspectives. Appl Microbiol Biotechnol. 2018; 102(16):6877−84. https://doi.org/10.1007/s00253-018-9160-9
  67. Pirog TP, Savenko IV, Lutsay DA. Microbial surface-active substances as antiadhesive agents. Biotechnologia Acta. 2016; 9(3):7−22. https://doi.org/10.15407/biotech9.03.007
  68. Pirog TP, Lutsay DA, Kliuchka LV, Beregova KA. Antimicrobial activity of surfactants of microbial origin. Biotechnologia Acta. 2019; 12(1):39−57. https://doi.org/10.15407/biotech12.01.039
  69. Gein SV, Kuyukina MS, Ivshina IB, Baeva TA, Chereshnev VA. In vitro cytokine stimulation assay for glycolipid biosurfactant from Rhodococcus ruber: role of monocyte adhesion. Cytotechnology. 2011; 63(6):559−66. https://doi.org/10.1007/s10616-011-9384-3
  70. Baeva TA, Gein SV, Kuyukina MS, Ivshina IB, Kochina OA, Chereshnev VA. Effect of glycolipid Rhodococcus biosurfactant on secretory activity of neutrophils in vitro. Bull Exp Biol Med. 2014; 157(2):238−42. https://doi.org/10.1007/s10517-014-2534-9
  71. Gein SV, Kochina OA, Kuyukina MS, Ivshina IB. Effects of glycolipid Rhodococcus biosurfactant on innate and adaptive immunity parameters in vivo. Bull Exp Biol Med. 2018; 165(3):368−72. https://doi.org/10.1007/s10517-018-4172-0
  72. Pirog TP, Konon AD, Beregovaya KA, Shulyakova MA. Antiadhesive properties of the surfactants of Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017, and Nocardia vaccinii IMB B-7405. Microbiology. 2014; 83(6):732-9. https://doi.org/10.1134/S0026261714060150
  73. Pirog TP, Shevchuk TA, Petrenko NM, Paliichuk OI, Iutynska GO. [Influence of cultivation conditions of Rhodococcus erythropolis IMV Ac-5017 on the properties of synthesized surfactants]. Mikrobiol Z. 2018; 80(4):13-27. https://doi.org/10.15407/microbiolj80.04.013
  74. Pirog T, Leonova N, Shevchuk T, Savenko I, Iutinska H. [Synthesis of phytohormones bacteria of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017 and Nocardia vaccinii IMV B-7405 - producers of surface-active substances]. Proceedings of the National Academy of Sciences of Belarus. Biological series, 2017; (1):90-5. Russian.
  75. Pirog TP, Havrylkina DV, Leonova NO, Shevchuk TA, Iutynska GO. [Synthesis of biologically active gibberellins GA4 and GA7 by microorganisms]. Mikrobiol Z. 2019; 81(2):90−109. https://doi.org/10.15407/microbiolj81.02.090