Mikrobiol. Z. 2019; 81(5):3-15. Ukrainian.
doi: https://doi.org/10.15407/microbiolj81.05.003

Biofilm Destruction in the Presence of Surfactants Synthesized under Different
Cultivation Conditions of Nocardia vaccinii IMB В-7405

Pirog T.P.1,2, Kliuchka I.V.1, Kliuchka L.V.1, Shevchuk T.A.2, Iutynska G.O.2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim. To study the effect of the cultivation conditions of Nocardia vaccinii IMV B-7405 on the ability of the synthesized surfactants to destroy biofilms. Methods. The IMV B-7405 strain was grown in a medium with purified glycerol, refined and fried oil of various qualities, waste of biodiesel production and a mixture of substrates until the early and late stationary growth phase. The surfactants were extracted from supernatant of cultural liquid with a mixture of chloroform and methanol (2:1). The degree of biofilm destruction was determined by spectrophotometric method. Results. It was established that the degree of bacterial and yeast biofilms destruction in the presence of surfactants depended on the cultivation conditions of N. vaccinii IMB B-7405 (nature, concentration, quality of the growth substrate and the duration of the process). The highest degree of bacterial biofilms destruction (53–78%) was observed under the action of surfactants synthesized on a mixture of waste of biodiesel production and molasses. The destruction of Candida albicans D-6 biofilm was maximal (52–72%) in the presence of surfactants obtained on purified glycerol. Increasing the duration of N. vaccinii IMV B-7405 cultivation on refined and after frying «potato selyanski» oil was accompanied by the synthesis of surfactants, under the action of which the degree of destruction of bacterial test cultures biofilms decreased 1.3−2.2 times. Higher destruction of biofilms in the presence of supernatants compared to using surfactants solutions of similar concentration may be due to the synthesis of N. vaccinii IMV B-7405 other, non-surfactant, metabolites capable of destroying biofilms. Conclusions. The presented data indicate that surfactants synthesized under different cultivation conditions of N. vaccinii IMV B-7405 are capable to destroy bacterial and yeast biofilms. The dependence of the biofilms degree destruction in the presence of surfactants on the producer growing conditions must be considered when technologies of production of these microbial synthesis products are being developed.

Keywords: Nocardia vaccinii IMV B-7405, surfactants, destruction of biofilms, nature of carbon source, duration of cultivation.

Full text (PDF, in Ukrainian)

  1. Kamaruzzaman F, Tan P, Mat Yazid A, Saeed I, Hamdan H, Choong S, et al. Targeting the bacterial protective armour; challenges and novel strategies in the treatment of microbial biofilm. Materials (Basel). 2018; 11(9):552−4. https://doi.org/10.3390/ma11091705
  2. Johani K, Abualsaud D, Costa DM, Hu H, Whiteley G, Deva A, et al. Characterization of microbial community composition, antimicrobial resistance and biofilm on intensive care surfaces. J Infect Public Health. 2018;11(3):418-24. https://doi.org/10.1016/j.jiph.2017.10.005
  3. Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanismsof action. Virulence. 2018; 9(1):522–54. https://doi.org/10.1080/21505594.2017.1313372
  4. Hathroubi S, Mekni A, Domenico P, Nguyen D, Jacques M. Biofilms: microbial shelters against antibiotics. Microbial Drug Resistance. 2017; 23(2):147–56. https://doi.org/10.1089/mdr.2016.0087
  5. Pirog TP, Savenko IV, Lutsay DA. Microbial surface-active substances as antiadhesive agents. Biotechnologia Acta. 2016; 9(3):7−22. https://doi.org/10.15407/biotech9.03.007
  6. Dalilia D, Aminib M, Faramarzic MA, Fazelia R, Khoshayanda MR, Samadi N. Isolation and structural characterization of Coryxin, a novel cyclic lipopeptide from Corynebacterium xerosis NS5 having emulsifying and anti-biofilm activity. Colloids Surf B: Biointerfaces. 2015; 135:425–32. https://doi.org/10.1016/j.colsurfb.2015.07.005
  7. Sharma D, Saharan S, Chauhan N, Procha S, Lal S. Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. Springerplus. 2015; 4:4. https://doi.org/10.1186/2193-1801-4-4
  8. Ceresa C, Rinaldi M, Chiono V, Carmagnola I, Allegrone G, Fracchia L. Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie Van Leeuwenhoek. 2016;109(10):1375−88. https://doi.org/10.1007/s10482-016-0736-z
  9. Yan X, Gu S, Cui X, Shi Y, Wen S, Chen H et al. Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microb Pathog. 2019;127:12‒20. https://doi.org/10.1016/j.micpath.2018.11.039
  10. Jovanovic M, Radivojevic J, O’Connor K, Blagojevic S, Begovic B, Lukic V, et al. Rhamnolipid inspired lipopeptides effective in preventing adhesion and biofilm formation of Candida albicans. Bioorg Chem. 2019; 87:209−17. https://doi.org/10.1016/j.bioorg.2019.03.023
  11. Mouafo H, Mbawala A, Ndjouenkeu R. Effect of different carbon sources on biosurfactants’ production by three strains of Lactobacillus spp. Biomed Res Int. 2018; 2018:5034783. https://doi.org/10.1155/2018/5034783
  12. Konishi M, Morita T, Fukuoka T, Imura T, Uemura S, Iwabuchi H, et al. Efficient production of acid-form sophorolipids from waste glycerol and fatty acid methylesters by Candida floricola. J Oleo Sci. 2018; 67(4):489−96. https://doi.org/10.5650/jos.ess17219
  13. Pidhorskyy V, Iutinska G, Pirog T. [Intensification of microbial synthesis technologies]. Kyiv: Nauk. Dumka, 2010. Ukrainian.
  14. Pirog TP, Sofilkanych AP, Shulyakova M. Shevchuk TA. Biosurfactant synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 on byproduct of biodiesel production. Food Bioprod Process. 2015; 93:11–8. https://doi.org/10.1016/j.fbp.2013.09.003
  15. Pirog TP, Kudrya NB, Shevchuk TA, Beregova KA. Iutynska GO. [Bioconversion of crude glycerole and molasses mixture in biosurfactants of Nocardia vaccinii IMB B-7405]. Microbiol Z. 2015; 77(3):28−35. Russian. https://doi.org/10.15407/microbiolj77.03.028
  16. Pirog TP, Nikituk LV, Tymoshuk KV, Shevchuk TA, Iutynska GO. [Biological properties of Nocardia vaccinii IMV B-7405 surfactants synthesized on fried sunflower oil]. Microbiol Z. 2016; 78(2):2−12. Ukrainian. https://doi.org/10.15407/microbiolj78.02.002
  17. Pirog TP, Nikituk LV, Iutynska GO. [Biological properties of Nocardia vaccinii IMV B-7405 surfactants synthesized on by product of biodiesel production]. Microbiol Z. 2016; 78(5):12−20. Ukrainian. https://doi.org/10.15407/microbiolj78.05.012
  18. [Biochemical studies of membranes]. Ed. E. Meddy. Moscow: World. 1979. Russian.
  19. Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, et al. Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol. 2017; 101(15):5951−60. https://doi.org/10.1007/s00253-017-8396-0
  20. Mulligan N, Sharma K, Mudhoo A. Biosurfactants: research trends and applications. New York: Taylor & Francis Group. 2014. https://doi.org/10.1201/b16383
  21. Aleksic I, Petkovic M, Jovanovic M, Milivojevic D, Vasiljevic B, Nikodinovic-Runic J, et al. Anti-biofilm properties of bacterial di-rhamnolipids and their semi-synthetic amide derivatives. Front Microbiol. 2017; 8:2454. https://doi.org/10.3389/fmicb.2017.02454
  22. Diaz De Rienzo A, Stevenson S, Marchant R, Banat M. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel. Appl Microbiol Biotechnol. 2016; 100(13):5773−9. https://doi.org/10.1007/s00253-016-7310-5
  23. Eckhard LH, Houri-Haddad Y, Sol A, Zeharia R, Shai Y, Beyth S, et al. Sustained release of antibacterial lipopeptides from biodegradable polymers against oral pathogens. PLoS One. 2016; 11(9):e0162537. https://doi.org/10.1371/journal.pone.0162537
  24. De Rienzo A, Martin J. Effect of mono and di-rhamnolipids on biofilms pre-formed by Bacillus subtilis BBK006. Curr Microbiol. 2016; 73(2):183−9. https://doi.org/10.1007/s00284-016-1046-4
  25. Singh N, Pemmaraju C, Pruthi A, Cameotra S, Pruthi V. Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from Pseudomonas aeruginosa DSVP20. Appl Biochem Biotechnol. 2013; 169(8):2374−91. https://doi.org/10.1007/s12010-013-0149-7
  26. Rivardo F, Turner J, Allegrone G, Ceri H, Martinotti G. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol. 2009; 83(3):541–53. https://doi.org/10.1007/s00253-009-1987-7
  27. Rautela R, Singh K, Shukla A, Cameotra S. Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans. Antonie Van Leeuwenhoek. 2014; 105(5):809–21. https://doi.org/10.1007/s10482-014-0135-2
  28. Ciandrini E, Campana R, Casettari L, Perinelli DR, Fagioli L, Manti A, et al. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm. Appl Microbiol Biotechnol. 2016; 100(15): 6767−77. https://doi.org/10.1007/s00253-016-7531-7
  29. Pirog TP, Konon AD, Sofilkanich AP, Iutynska GO. Effect of surface-active substances of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017 and Nocardia vaccinii K-8 on phytopathogenic bacteria. Appl Biochem Microbiol. 2013; 49(4):360−7.https://doi.org/10.1134/S000368381304011X
  30. Dhakal D, Rayamajhi V, Mishra R, Sohng J.K. Bioactive molecules from Nocardia: diversity, bioactivities and biosynthesis. J Ind Microbiol Biotechnol. 2019; 46(3−4):385−407. https://doi.org/10.1007/s10295-018-02120-y
  31. Sakai K, Komaki H, Gonoi T. Identifcation and functional analysis of the Nocardithiocin gene cluster in Nocardia pseudobrasiliensis. PLoS One 2015; 10:e0143264. https://doi.org/10.1371/journal.pone.0143264