Mikrobiol. Z. 2018; 80(4):78-87.
doi: https://doi.org/10.15407/microbiolj80.04.078

The Biological Activity of Alternaria Species

Tsyganenko K.S., Savchuk Ya.I., Nakonechna L.T., Kurchenko I.M.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Alternaria species isolated from different econiches produce a wide variety of biologically active metabolites. The aim of this article was the evaluation of the biological activity spectrum of the small-spored Alternaria species from different trophic groups (saprophytes, endophytes and plant pathogens) using screening of biologically active metabolites on a wide set of test organisms, and selection of promising strains-producers. Methods. Antibiotic, antifungal and phytotoxic activities of culture filtrates and chloroform extracts were determined by agar diffusion assay method. Results. 19 % of cultural filtrates among of 64 studied strains showed the biological activity at least against one test organism. The most of these fungi belong to endophytic strains and were active against test plant pathogenic fungi, bacteria and algae. Chloroform extracts of cultural filtrates of 33 % of fungi showed biological activity against at least to one test organism. The obtained extracts had specific activity mainly against certain test culture. These preparations selectively inhibited the growth of Staphylococcus aureus B-909, Chlorella vulgaris 191 and Rizoctonia solani 16036. Conclusions. The screening of 64 strains of the Alternaria fungi isolated from different ecological niches allows concluding that they have low biological activity. Endophytic Alternaria strains were characterized by wider spectrum of activities than plant pathogenic and soil ones. They inhibited all test organisms except Gram negative bacteria and yeast-like fungi. The biologically active metabolites of endophytic Alternaria strains including high-molecular compounds play important role in mutual coexistence endophytic fungi and host-plants as well as their spread. Chloroform extracts of the soil saprophytes had comparably high activity especially against fungi and algae. Obviously these low-molecular compounds facilitate to adaptive survival of saprophytic fungi in soil habitats with high biodiversity. For further studies were selected two strains: highly phytotoxic A. brassicicola 2855 and A. longipes 16800 (an antagonist of S. aureus B-909).

Keywords: Alternaria, endophytes, plant pathogens, saprophytes, biologically active metabolites.

Full text (PDF, in English)

  1. Lawrence D, Rotondo F, Gannibal Ph. Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycol Progress. 2016; 15(3):1-22. https://doi.org/10.1007/s11557-015-1144-x
  2. Meena M, Gupta SK, Swapnil P, Zehra A, Dubey MK, Upadhyay RS. Alternaria toxins: potential virulence factors and genes related to pathogenesis. Front Microbiol. 2017; 8:1451. https://doi.org/10.3389/fmicb.2017.01451
  3. Lawrence DP, Gannibal PhB, Peever TL, Pryor BM. The sections of Alternaria: formalizing species-group concepts. Mycologia. 2013; 105(3):530-46. https://doi.org/10.3852/12-249
  4. Kurup VP, Shen HD, Banergee B. Respiratory fungal allergy. Microb Infect. 2000; 2:1101-10. https://doi.org/10.1016/S1286-4579(00)01264-8
  5. Peever TL, Su G, Carpenter-Boggs L, Timmer LW. Molecular systematics of citrusassociated Alternaria species. Mycologia. 2004; 96(1):119-34. https://doi.org/10.1080/15572536.2005.11833002
  6. Pinto VEF, Patriarca A. Alternaria Species and Their Associated Mycotoxins. In: Moretti A, Susca A, editors. Mycotoxigenic Fungi. Methods in Molecular Biology. Vol. 1542. New York: Humana Press; 2017. p. 13-32. https://doi.org/10.1007/978-1-4939-6707-0_2
  7. Ostry V. Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 2008; 1:175-88. https://doi.org/10.3920/WMJ2008.x013
  8. Frisvad JC, Andersen B, Thrane U. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res. 2008; 112:231-40. https://doi.org/10.1016/j.mycres.2007.08.018
  9. Andersen B, Thrane U. Differentiation of Alternaria infectoria and Alternaria alternata based on morphology, metabolite profiles, and cultural characteristics. Can J Microbiol. 1996; 42:685-9. https://doi.org/10.1139/m96-093
  10. Andersen B, Krøger E, Roberts RG. Chemical and morphological segregation of Alternaria alternata, A. gaisen and A. longipes. Mycol Res. 2001; 105:291-9. https://doi.org/10.1017/S0953756201003446
  11. Andersen B, Krøger E, Roberts RG. Chemical and morphological segregation of Alternaria arborescens, A. infectoria and A. tenuissima species-groups. Mycol Res. 2002; 106:170-82. https://doi.org/10.1017/S0953756201005263
  12. Andersen B, Dongo A, Pryor BM. Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila. Mycol Res. 2008; 112:241-50. https://doi.org/10.1016/j.mycres.2007.09.004
  13. Ntasiou P, Myresiotis C, Konstantinou S, Papadopoulou-Mourkidou E, Karaoglanidis GS. Identification, characterization and mycotoxigenic ability of Alternaria spp. causing core rot of apple fruit in Greece. Int J Food Microbiol. 2015; 197:22-9. https://doi.org/10.1016/j.ijfoodmicro.2014.12.008
  14. Tsuge T, Harimoto Y, Akimitsu K, Ohtani K, Kodama M, Akagi Y, Egusa M, Yamamoto M, Otani H. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol Rev. 2013; 37:44-66. https://doi.org/10.1111/j.1574-6976.2012.00350.x
  15. Lou J, Fu L, Peng Y, Zhou L. Metabolites from Alternaria fungi and their bioactivities. Molecules. 2013; 18:5891-935. https://doi.org/10.3390/molecules18055891
  16. Tsyganenko KS, Zaichenko OM. [Antibiotic properties of some species of genus Aspergillus Mich.]. Mikrobiol Z. 2004; 66(4):56-61. Ukrainian.
  17. Savchuk YaI, Zaichenko OM. [Evaluation of potential of micromycetes concerning synthesis of biologically active substances]. Mikrobiol Z. 2010; 72(2):15-21. Ukrainian.
  18. Gannibal PhB. Monitoring of alternarioses of crops and identification of fungi of the genus Alternaria. A manual. Levitin MM, editor. St. Petersburg: VIZR; 2011.
  19. Khalid MM, Sudhir Ch. A modified medium for antibiotic production by Aspergillus spp. antagonistic to citrus cancer pathogen. Nat Acad Sci Lett. 1989; 12(4):103-6.
  20. Heatley NG. A method for the assay of penicillin. Biochem J. 1944; 38:61-5. https://doi.org/10.1042/bj0380061
  21. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016; 6(2):71-9. https://doi.org/10.1016/j.jpha.2015.11.005
  22. Berto P, Belingheri L, Dehorter B. Production and purification of a novel extracellular lipase from Alternaria brassicicola. Biotechnol Lett. 1997; 19:533-6. https://doi.org/10.1023/A:1018333219304
  23. Saha D, Fetzner R, Burkhardt B, Podlech J, Metzler M, Dang H, Lawrence C, Fischer R. Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl ether (AME) formation in Alternaria alternata. PLoS ONE. 2012; 7:e40456. https://doi.org/10.1371/journal.pone.0040564
  24. Isshiki A, Akimitsu K, Nishio K, Tsukamoto M, Yamamoto H. Purification and characterization of an endopolygalacturonase from the rough lemon pathotype of Alternaria alternata, the cause of citrus brown spot disease. Physiol Mol Plant Pathol. 1997; 51:155-67. https://doi.org/10.1006/pmpp.1997.0106
  25. Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2013; 11(1):21-32. https://doi.org/10.1038/nrmicro2916
  26. Kusari S, Hertweck C, Spiteller M. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol. 2012; 19(7):792-8. https://doi.org/10.1016/j.chembiol.2012.06.004
  27. Martinez-Klimova E, Rodríguez-Pe-a K, Sánchez S. Endophytes as sources of antibiotics. Biochem Pharmacol. 2017; 134:1-17. https://doi.org/10.1016/j.bcp.2016.10.010
  28. Anyanwu CS, Sorensen JL. Secondary metabolites from a strain of Alternaria tenuissima isolated from Northern Manitoba soil. Nat Prod Commun. 2015; 10(1):39-42.
  29. Pedras MSC, Chumala PB, Jin W, Islam MS, Hauck DW. The phytopathogenic fungus Alternaria brassicicola: Phytotoxin production and phytoalexin elicitation. Phytochemistry. 2009; 70:394-402. https://doi.org/10.1016/j.phytochem.2009.01.005
  30. Yang J, Yin Z-Q, Kang Z-T, Liu C-J, Yang J-K, Yao J-H, Luo Y-Y. Transcriptomic profiling of Alternaria longipes invasion in tobacco reveals pathogenesis regulated by AlHK1, a group III histidine kinase. Sci Rep. 2017; 7:16083. https://doi.org/10.1038/s41598-017-16401-6
  31. Beresteskiy AO. A review of fungal phytotoxins: from basic studies to practical use. Appl Biochem Microbiol. 2008; 44:453-65. https://doi.org/10.1134/S0003683808050013
  32. Kusari S, Singh S, Jayabaskaran C. Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol. 2014; 32(6):297-303. https://doi.org/10.1016/j.tibtech.2014.03.009