Mikrobiol. Z. 2018; 80(2):44-55. Ukrainian.
doi: https://doi.org/10.15407/microbiolj80.02.044

Biosynthesis of Phytohormones by Penicillium funiculosum Strains
from Different Ecological Niches

Yurieva О.M., Dragovoz I.V., Leonova N.O., Biliavska L.O., Syrchin S.O., Kurchenko I.M.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim. Study of the ability to synthesize extracellular auxins, cytokinins and abscisic acid (ABA) by endophytic and saprotrophic Penicillium funiculosum strains. Methods. Specific biotesting for auxin and cytokinin activities. Quantitative spectrodensitometric thin-layer chromatography. Results. It was shown that the fungal culture fltrates (CF) of P. funiculosum established auxin and cytokinin activities. As a result of study of qualitative and quantitative content of the three classes of phytohormones, was demonstrated that the endophytic strain synthesized high level of physiologically active form of auxins (indole-3-acetic acid) by 55 %, cytokinins (zeatin) by 97 % and 76 % by abscisic acid than saprotrophic one. Conclusions. The studied P. funiculosum strains from different ecotopes synthesized auxins, cytokinins and ABA. The levels and ratio of hormones-stimulants and ABA synthesized by P. funiculosum strains evidence to the possibility of forming of different types of relationships with plants – mutualistic and/or associative.

Keywords: Penicillium funiculosum, phytohormones, auxins, cytokinins, abscisic acid, endophyte, saprotroph.

Full text (PDF, in Ukrainian)

  1. Barker S, Tagu D. The roles of auxins and cytokinins in mycorrhizal symbioses. J. Plant Growth Regul. 2000;19(2):144-54.
  2. Benjamins R, Scheres B. Auxin: the looping star in plant development. Annu Rev Plant Biol. 2008; 59:443-65. https://doi.org/10.1146/annurev.arplant.58.032806.103805
  3. Bilai VI, editor. [Methods of experimental mycology: reference guide]. Kiev: Nauk. dumka; 1982. Russian.
  4. Biliavska LO, Nadkernychna OV, Kopilova OB. [Phytohormones biosynthesis by soil molds Cladosporium cladosporioides]. Mikrobiol Z. 2017; 79(3):3-13. Ukrainian. https://doi.org/10.15407/microbiolj79.03.003
  5. Boichuk OB, Zaitseva LM. [Biological methods of determination of native growth regulators]. Ukr J Bot. 1977; 34(6):630-6. Ukrainian.
  6. Chanclud E, Morel J-B. Plant hormones: a fungal point of view. Molecular Plant Pathology. 2016;17(8):1289-97. https://doi.org/10.1111/mpp.12393
  7. Cooper SJ, Ashby AM. Comparison of cytokinin and cytokinin-O-glucoside cleaving beta-glucosidase production in vitro by Venturia inaequalis and other phytopathogenic fungi with differing modes of nutrition in planta. Physiol Mol Plant Pathol. 1998;53:61-72. https://doi.org/10.1006/pmpp.1998.0171
  8. Furukawa T, Koga J, Adachi T, Kishi K, Syono K. Efficient conversion of L-tryptophan to indole-3-acetic acid and/or tryptophol by some species of Rhizoctonia. Plant Cell Physiol. 1996; 37:899-905. https://doi.org/10.1093/oxfordjournals.pcp.a029037
  9. Gryndler M, Hrselova H, Chvatalova I, Jansa J. The effect of selected plant hormones on in vitro proliferation of hyphae of Glomus fistulosum. Biol Plant. 1998;41:255-63. https://doi.org/10.1023/A:1001874832669
  10. Hasan HAH. Gibberellin and auxin production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Rostlinná Výroba. 2002; 48(3):101-6. https://doi.org/10.1556/AMicr.49.2002.1.11
  11. Khan AL, Hamayun M, Kim YH, Kang SM, Lee IJ. Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem. 2011;49(8):852-61. https://doi.org/10.1016/j.plaphy.2011.03.005
  12. Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M, et al. Endophytic fungi from Frankincense Tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS ONE. 2016;11(6):e0158207. https://doi.org/10.1371/journal.pone.0158207
  13. Kholodny Institute of Botany. [Guidelines on determination of plant hormones]. Kyiv; 1988. Russian.
  14. Kulkarni GB, Sanjeevkumar S, Kirankumar B, Santoshkumar M, Karegoudar TB. Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of wilt in chickpea. Appl Biochem Biotechnol. 2013;169:1292-305. https://doi.org/10.1007/s12010-012-0037-6
  15. Laurans F, Pepin R, Gay G. Fungal auxin overproduction affects the anatomy of Hebeloma cylindrosporum–Pinus pinaster ectomycorrhizas. Tree Physiol. 2001; 21:533-40. https://doi.org/10.1093/treephys/21.8.533
  16. Lievens L, Pollier J, Goossens A, Beyaer R, Staal J. Abscisic Acid as Pathogen Effector and Immune Regulator. Front Plant Sci. 2017; 8:587. https://doi.org/10.3389/fpls.2017.00587
  17. Ludwig-Müller J. Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot. 2011; 62(6):1757-73. https://doi.org/10.1093/jxb/erq412
  18. Meixner C, Ludwig-Müller J, Miersch O, Gresshof P, Staehelin C, Vierheilig H. Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta, 2005; 222(4):709-15. https://doi.org/10.1007/s00425-005-0003-4
  19. Morrison EN, Emery RJN, Saville BJ. Phytohormone involvement in the Ustilago maydis–Zea mays pathosystem: relationships between abscisic acid and cytokinin levels and strain virulence in infected cob tissue. PLoS One. 2015;10:e0130945. https://doi.org/10.1371/journal.pone.0130945
  20. Murphy AM, Pryce-Jones E, Johnstone K, Ashby AM. Comparison of cytokinin production in vitro by Pyrenopeziza brassicae with other plant pathogens. Physiol Mol Plant Pathol. 1997; 50:53-65. https://doi.org/10.1006/pmpp.1996.0070
  21. Nakamura T, Tomita K, Kawanabe Y, Murayama T. Effects of auxin and gibberellin on conidial germination in Neurospora crassa II: "conidial density effect" and auxin. Plant Cell Physiol. 1982; 23:1363-9.
  22. Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb Pathog. 2015; 82:50-9. https://doi.org/10.1016/j.micpath.2015.04.001
  23. Pohleven E, Gogala N. The influence of natural cytokinins on the content of K, P, Ca and Na in the mycelium of the mycorrhizal fungus Suillus variegatus. Biol Vestn. 1986; 34:79-88.
  24. Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse C.W. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol Plant Pathol. 2008; 9:339-55. https://doi.org/10.1111/j.1364-3703.2008.00470.x
  25. Robinson M, Riov J, Sharon A. Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol. 1998; 64(12):5030-2.
  26. Savinskiy SV, Dragovoz IV, Pedchenko VK. [Determination of indole-3-acetic acid and abscisic acid in a plant sample by HPLC]. Fiziol. and Biochem. cult. sol. 1991; 23(6):611-9. Russian.
  27. Sharaf EF, Farrag AA. Induced resistance in tomato plants by IAA against Fusarium oxysporum lycopersici. Pol J Microbiol. 2004; 53:111-6.
  28. Spence CA, Lakshmanan V, Donofrio N, Bais HP. Crucial roles of abscisic acid biogenesis in virulence of rice blast fungus Magnaporthe oryzae. Front Plant Sci. 2015; 6:1-13. https://doi.org/10.3389/fpls.2015.01082
  29. Stec N, Banasiak J, Jasiński M. Abscisic acid - an overlooked player in plant-microbe symbioses formation? Acta Biochim Pol. 2016; 63(1):53-8. https://doi.org/10.18388/abp.2015_1210
  30. Tsavkelova E, Oeser B, Oren-Young L, Israeli M, Sasson Y, Tudzynski B, Sharon A. Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genet. Biol. 2012; 49:48-57. https://doi.org/10.1016/j.fgb.2011.10.005
  31. Vanneste S. Auxin coordinates cell division and cell fate specification during lateral root initiation. Physiol. Plant. 2005;123:139-46. https://doi.org/10.1111/j.1399-3054.2005.00466.x
  32. Wani ZA, Mirza DN, Arora P, Riyaz-UI-Hassan S. Molecular phylogeny, diversity, community structure and plant growth promoting properties of fungal endophytes associated with the corms of Saffron plant: an insight into the microbiome of Crocus sativus Linn. Fungal Biol. 2016; 20(12):1509-24. https://doi.org/10.1016/j.funbio.2016.07.011
  33. Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules. 2012; 17(9):10754-73. https://doi.org/10.3390/molecules170910754
  34. Waqas M, Khan AL, Lee IJ. Bioactive chemical constituents produced by endophytes and effects on rice plant growth. Journal of Plant Interactions. 2014; 9(1):478-87. https://doi.org/10.1080/17429145.2013.860562
  35. Yurieva OM, Dragovoz IV, Leonova NO, Ostapchuk AM, Kharkhota MA, Syrchin SO, Kurchenko IM. [Gibberellins of endophytic and saprotrophic Penicillium funiculosum strains]. Mikrobiol Z. 2017; 79(5):57-69. Ukrainian. https://doi.org/10.15407/microbiolj79.05.057