Mikrobiol. Z. 2017; 79(4):88-109. Ukrainian.
doi: https://doi.org/10.15407/microbiolj79.04.088

Agroecological Engineering in Rhizosphere Biocontrol Plants and Formation of Soil Health

Gadzalo Ya.M.1, Patyka N.V.2, Zaryshnyak A.S.1, Patyka Т.І.2

1National Academy of Agrarian Sciences of Ukraine
9 Suvorov Str., Kyiv, 01010, Ukraine

2National University of Life and Environmental Sciences of Ukraine
13 Heroyiv Oborony Str., Kyiv, 03041, Ukraine

We consider the modern approaches to the study of plant-microbe interactions, rhizosphere, their importance for the formation of a healthy crop. It is shown how knowledge of the mechanisms and the use of ecological functions of the root system helps to overcome the limitations of the soil environment, the ability to control harmful organisms in agroecosystems. The development of high-tech biotechnology, considering biological systems at all levels and take into account the ontogenesis stage, make it possible to uncover the mechanisms and provide new knowledge about the formation of an unprecedented rhizosphere interactions and systems, as well as to predict the effects of plant health. Agroecological bioengineering approaches, in turn, make it possible to overcome the limitations of traditional crop control strategies through the use and disclosure of the rhizosphere functions.

Key words: agroecosystem, biome soil, integrated pest control, bioprotection rhizosphere.

Full text (PDF, in Ukrainian)

  1. Oerke E.C. Crop losses to pests. J. Agric. Sci. 2006; 144(1):31–43. https://doi.org/10.1017/S0021859605005708
  2. Raaijmakers J.M., Paulitz T.C., Steinberg C., Alabouvette C., Moënne-Loccoz Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. – 2009; 321:341–361. https://doi.org/10.1007/s11104-008-9568-6
  3. Berendsen R.L., Pieterse C.M.J., Bakker P .A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012; 17(8):478–486. https://doi.org/10.1016/j.tplants.2012.04.001
  4. Van der Heijden M.G.A., Bardgett R.D., van Straalen N.M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008; 11(3):296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
  5. Hiddink G.A., Termorshuizen A.J., Raaijmakers J.M., van Bruggen A.H.C. Effect of mixed cropping on rhizosphere microbial communities and plant health. In Book of abstracts international congress rhizosphere, 2004, Munich, Germany, 12-17 Sep 2004.
  6. Mendes R., Kruijt M., de Bruijn I., Dekkers E., et all. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science. 2011; 332(6):1097– 1100. https://doi.org/10.1126/science.1203980
  7. Marschner H. Mineral nutrition of higher plants. London: Academic Press. 1995.
  8. Tomich T.P ., Brodt S., Ferris H., et all. Agroecology: A review from a global-change perspective. Ann. Rev. Environ. Resour. 2011; 36:193–222. https://doi.org/10.1146/annurev-environ-012110-121302
  9. Haas D., Defago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 2005; 3(4):307–319. https://doi.org/10.1038/nrmicro1129
  10. Bais H.P ., Weir T.L., Perry L.G., Gilroy S., Vivanco J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006; 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
  11. Kievit T.R., Iglewski B.H. Bacterial Quorum Sensing in Pathogenic Relationships. Infect. Immun. 2000; 68(9):4839-4849. https://doi.org/10.1128/IAI.68.9.4839-4849.2000
  12. Lugtenberg B.J., Dekkers L., Bloemberg G.V. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 2001; 39(1):461–490. https://doi.org/10.1146/annurev.phyto.39.1.461
  13. Ryan P. R., Dessaux Y., Thomashow L.S., Weller D.M. Rhizosphere engineering and management for sustainable agriculture. Plant Soil. 2009: 321:363–383. https://doi.org/10.1007/s11104-009-0001-6
  14. Van Tol R.W.H.M., Van Der Sommen A.T.C., Boff M.I.C., et all. Plants protect their roots by alerting the enemies of grubs. Ecol. Lett. 2001; 4:292–294. https://doi.org/10.1046/j.1461-0248.2001.00227.x
  15. Berg G., Zachow C., Lottmann J., et all. Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl. Environ. Microbiol. 2005; 171(8):4203–4213. https://doi.org/10.1128/AEM.71.8.4203-4213.2005
  16. Hassan S., Mathesius U. The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J. Exp. Bot. 2012; 63(9):3429-3444. https://doi.org/10.1093/jxb/err430
  17. Akiyama K., Matsuzaki K., Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005; 435(7043):824–827. https://doi.org/10.1038/nature03608
  18. Weller D.M., Raaijmakers J.M., Gardener B.B.M., Thomashow L.S. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 2002; 40:309–348. http://doi.org/10.1146/annurev.phyto.40.030402.110010
  19. Manici L.M., Caputo F ., Baruzzi G. Additional experiences to elucidate the microbial component of soil suppressiveness towards strawberry black root rot complex. Ann. Appl. Biol. 2005; 146:421–431. https://doi.org/10.1111/j.1744-7348.2005.040051.x
  20. Ghini R., Morandi M.A.B. Biotic and abiotic factors associated with soil suppressiveness to Rhizoctonia solani. Sci. Agric. 2006; 63(2):153–160. https://doi.org/10.1590/S0103-90162006000200007
  21. Kinkel L.L., Bakker M.G., Schlatter D.C. A coevolutionary framework for managing disease-suppressive soils. Annu. Rev. Phytopathol. 2011; 49:47–67. https://doi.org/10.1146/annurev-phyto-072910-095232
  22. Pozo M.J., Azcon-Aguilar C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 2007; 10(4):393–398. https://doi.org/10.1016/j.pbi.2007.05.004
  23. Doornbos R.F., van Loon L.C., Bakker P.A.H.M. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron. Sustain. Dev. 2012; 32(1):227–243. https://doi.org/10.1007/s13593-011-0028-y
  24. Patyka N.V., Bublik N.A., Patyka T.I. Rhizosphere trophic chains: role and stability in soil processes and ecosystems. Journal of Characterization and Development of Novel Materials. 2015; 7(3):413-418.
  25. Welbaum G.E., Sturz A.V., in Dong Z., Nowak J. Managing soil microorganisms to improve productivity of agro-ecosystems. Crit. Rev. Plant Sci. 2004; 23(2):175–193. https://doi.org/10.1080/07352680490433295
  26. Mendes R., Garbeva P ., Raaijmakers J.M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013; 37(5):634–663. https://doi.org/10.1111/1574-6976.12028
  27. Badri D.V., Vivanco J.M. Regulation and function of root exudates. Plant Cell Environ. 2009; 32(6):666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x
  28. Bakker M.G., Manter D.K., Sheflin A.M., Weir T.L., Vivanco J.M. Harnessing the rhizosphere microbiome though plant breeding and agricultural management. Plant soil. 2012; 360:1– 13. https://doi.org/10.1007/s11104-012-1361-x
  29. Srivastava R., Khalid A., Singh U.S., Sharma A.K. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol. Control. 2010; 53(1):24–31. https://doi.org/10.1016/j.biocontrol.2009.11.012
  30. Cetintas R., Dickson D.W. Persistence and suppressiveness of Pasteuria penetrans to Meloidogyne arenaria race 1. J. Nematol. 2004; 36(4):540–549.
  31. Chave M., Dabert P., Brun R., Godon J.J., Poncet C. Dynamics of rhizoplane bacterial communities subjected to physicochemical treatments in hydroponic crops. Crop Prot. 2008; 27:418–426. https://doi.org/10.1016/j.cropro.2007.07.010
  32. Hage-Ahmed K., Krammer J., Steinkellner S. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato. Mycorrhiza. 2013; 23(7):543–550. https://doi.org/10.1007/s00572-013-0495-x
  33. Oka Y. Mechanisms of nematode suppression by organic soil amendments. A review. Appl. Soil Ecol. 2010; 44:101–115. https://doi.org/10.1016/j.apsoil.2009.11.003
  34. Tchamitchian M., Collange B., Navarrete M., Peyre G. Multicriteria evaluation of the pathological resilience of in-soil vegetable protected cropping systems. Acta Hortic. 2011; 893:1239–1246. https://doi.org/10.17660/ActaHortic.2011.893.145
  35. Navarrete M., Tchamitchian M., Aissa Madani C., Collange B., Taussig C. Elaborating innovative solutions with experts using a multicriteria evaluation tool. ISDA, 2010: Montpellier, France.
  36. Moonen A.C., Barberi P. Functionnal biodiversity: An agroecosystem approach. Agr. Ecosyst. Environ. 2008; 127:7–21. https://doi.org/10.1016/j.agee.2008.02.013
  37. Kattge J., Díaz S., Lavorel S., et al. TRY – a global database of plant traits. Glob. Change Biol. 2011; 17(9):2905–2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x
  38. Berg G., Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Eco. 2009; 68(1):1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x
  39. Duijff B.J., Pouhair D., Olivain C., Alabouvette C., Lemanceau P. Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417 and by nonpathogenic Fusarium oxysporum Fo47 Eur. J. Plant Pathol. 1998; 104:903–10. https://doi.org/10.1023/A:1008626212305
  40. Mazzola M. Assessment of soil microbial community structure for disease suppression. Annu. Rev. Phytopathol. 2004; 42(1):35–59. https://doi.org/10.1146/annurev.phyto.42.040803.140408
  41. Garbeva P., Van Veen J.A., van Elsas J.D. Microbial Diversity in Soil: Selection of Microbial Populations by Plant and Soil Type and implications for Disease Supressiveness. Annu. Rev. Phytopathol. 2004; 42(1):243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
  42. Lambers H., Mougel C., Jaillard B., Hisinger P. Plant-microbe interactions in the rhizosphere: an evolutionary perspective. Plant Soil. 2009; 321(1):83–115. https://doi.org/10.1007/s11104-009-0042-x
  43. Sturz A.V., Christie B.R., Nowak J. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 2000; 19(1):1–30. https://doi.org/10.1080/07352680091139169
  44. Verbruggen E., van der Heijden M., Rillig M.C., Kiers E.T. Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol. 2012; 197(4):1104–1109. https://doi.org/10.1111/j.1469-8137.2012.04348.x
  45. Lwin M., Ranamukhaarachchi S.L. Development of biological control of Ralstonia solanacearum through antagonistic microbial populations. J. Agri. Biol. 2006; 8(5):657–660.
  46. Prasanna R., Chaudhary V., Gupta V., Babu S., et all. Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. Eur. J. Plant. Pathol. 2013; 136(2):337–353. https://doi.org/10.1007/s10658-013-0167-x
  47. Wei Z., Huang J.F ., Tan S.Y., et all. The congeneric strain Ralstonia pickettii QL-A6 of Ralstonia solanacearum as an effective biocontrol agent for bacterial wilt of tomato. Biol. Control. 2013; 65(2):278–285. https://doi.org/10.1016/j.biocontrol.2012.12.010
  48. Hadzalo Ya.M., Patyka N.V., Zarishnyak A.S. Ahrobiolohiya rizosfery rasteniy: monohrafiya. Kyiv: Ahrarna nauka, 2015.
  49. Patyka N.V., Kolodyazhnyi A.Yu., Ibatullin I.I. Otsenka metagenoma i detektsiya funktsionalno znachimykh polimorfizmov prokariot pochvy s ispolzovaniem metoda pirosekvenirovaniya. Mikrobiol. Z. 2016; 78(2):43-51.
  50. Metodolohiya i praktyka vykorystannya mikrobnykh preparativ u tekhnolohiyakh vyroshchuvannya silskohospodarskykh kultur. Volkohon V.V., Zaryshnyak A.S. ta in. Kyiv: Ahrarna nauka, 2011.