Mikrobiol. Z. 2017; 79(4):30-39. Ukrainian.
doi: https://doi.org/10.15407/microbiolj79.04.030

Synergism of Antimicrobial Activity of Nocardia vaccinii IMV B-7405 Surfactants and Antibiotics

Pirog T.P.1,2, Nikituk L.V.1, Shevchuk T.A.2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim. To study the antimicrobial activity against some bacteria mixture of Nocardia vaccinii IMV B-7405 surfactants and antibiotics amikacin and ceftriaxone. Methods. Surfactants were extracted from supernatant of cultural liquid by mixture of chloroform and methanol (2 : 1).To determine the synergistic action antibiotics and surfactant solutions equal (0.5 mg/mL) concentrations were mixed in different proportions (20 − 80 %, v/v). The antimicrobial activity of antibiotics, surfactants and their mixtures was determined by index of the minimum inhibitory concentration (MIC). Results. It was found that even in the presence of 50 − 80 % surfactants in mixture with ceftriaxone and amikacin its MIC against Pseudomonas sp. MI-2, Staphylococcus aureus BMS-1, Enterobacter cloacae C-8 was on average 0.49 − 1.96 μg/ml, while the minimum inhibitory concentration of amikacin, ceftriaxone and surfactants separately was in the range 0.98 − 125 μg/ml. Conclusions. Lower MIC against bacterial test-cultures mixture of N. vaccinii IMV B-7405 surfactants and antibiotics as compared with minimum inhibitory concentration of individual preparations indicated their synergistic action.

Key words: Nocardia vaccinii ІMV B-7405, surfactants, antibiotics, antimicrobial activity, synergism.

Full text (PDF, in Ukrainian)

  1. Sumi C.D., Yang B.W., Yeo I.C., Hahm Y.T.Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can. J .Microbiol. 2015; 61(2): 93−103. https://doi.org/10.1139/cjm-2014-0613
  2. Hamad B. The antibiotics market. Nat. Rev. Drug Discov. 2010;  9(9): 675–676. https://doi.org/10.1038/nrd3267
  3. Allahverdiyev A.M., Kon K.V., Abamor E.S., Bagirova M., Rafailovich M. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.  Expert. Rev. Anti-Infect.Ther. 2011; 9(11): 1035–1052. https://doi.org/10.1586/eri.11.121
  4. Suzuki É.Y., Soldati P.P., Chaves M.G.A.M., Raposo N.R.B. Essential oil from Origanum vulgare Linnaeus: an alternative against microorganisms responsible for bad perspiration odour. J. Young Pharm. 2015; 7(1): 12–20.
  5. Tian J., Ban X., Zeng H., He J., Huang B., Wang Y. Chemical composition and antifungal activity of essential oil from Cicuta virosa L. var. latisecta Celak. Int. J. Food Microbiol. 2011; 145(2−3): 464−470. https://doi.org/10.1016/j.ijfoodmicro.2011.01.023
  6. Liu X., Ren B., Gao H., Liu M., Dai H., Song F., Yu Z., Wang S., Hu J., Kokare C.R., Zhang L. Optimization for the production of surfactin with a new synergistic аntifungal аctivity. PLoS One. 2012; 7(5). https://doi.org/10.1371/journal.pone.0034430
  7. Samadi N., Abadian N., Ahmadkhaniha R., Amini F., Dalili D., Rastkari N., Safaripour E., Mohseni F.A. Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus. Folia Microbiol (Praha). 2012; 57(6): 501−508. https://doi.org/10.1007/s12223-012-0164-z
  8. Pirog Т.P., Soflkanich А.P., Pokora K.A., Shevchuk Т.A., Іutinskaya G.A.[Synthesis of surfactants by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241and Nocardia vaccinii IMV B-7405 on industrial waste]. Microbiol. Z. 2014; 76(2): 18−24. Russian.
  9. Pirog T., Shulyakova M., Soflkanych A., Shevchuk. T., Maschenko O. Biosurfactant synthesis by Rhodococcus erytropolis ІМV Ас-5017, Acinetibacter calcoaceticus ІМV В-7241, Nocardia vaccinii ІМV В-7405 on byproduct of biodiesel production. Food Bioprod.Proces. 2015; 93(1): 11−18. https://doi.org/10.1016/j.fbp.2013.09.003
  10. Pirog T.P., Beregova K.A., Savenko I.V., Shevchuk T.A., Iutynska G.O. [Antimicrobial action of Nocardia vaccinii ІMV B-7405 surfactants]. Microbiol.Zh. 2015; 78(6): 2−10. Ukrainian.
  11. Pirog Т.P., Nikituk L.V., Tymoshuk K.V., Shevchuk Т.A., Іutynska G.A. [Biological properties of Nocardia vaccinii ІМV В-7405 surfactants synthesized on fried sunfower oil]. Microbiol.Zh. 2016; 78(2): 2–12. Ukrainian.
  12. Andrews J. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001; 48(1): 5–16. https://doi.org/10.1093/jac/48.suppl_1.5
  13. Rivardo F., Martinotti M.G.,Turner R.J., Ceri H. Synergistic effect of lipopeptide  biosurfactant  with antibiotics against Escherichia coli CFT073 bioflm. Int. J. Antimicrob. Agents. 2011; 37(4): 324–331. https://doi.org/10.1016/j.ijantimicag.2010.12.011
  14. Das P., Yang X.P., Ma L.Z. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsifcation property and antimicrobial activity. Front Microbiol. 2014. https://doi.org/10.3389/fmicb.2014.00696
  15. Fair R.J., Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem. 2014. https://doi.org/10.4137/PMC.S14459
  16. Turki Y., Mehr I., Ouzari H., Khessairi A., Hassen A. Molecular typing,  antibiotic resistance, virulence gene and bioflm formation of different Salmonella enteric serotypes. J. Gen. Appl. Microbiol. 2014; 60(4): 123–130. https://doi.org/10.2323/jgam.60.123
  17. Joshi-Navare K., Prabhune A. A. Biosurfactant-sophorolipid acts in synergy with  аntibiotics to enhance their efficiency. Biomed. Res. Int. 2013. https://doi.org/10.1155/2013/512495
  18. Irfan M., Shahi S.K., Sharma P.K. In vitro synergistic effect of biosurfactant produced by Bacillus subtilis MTCC 441 against drug resistant Staphylococcus aureus. J. Appl. Pharm. Sci. 2015; 5(3): 113−116. https://doi.org/10.7324/JAPS.2015.50320
  19. Fracchia L., Banat J.J., Cavallo M., Ceresa C., Banat I.M. Potential therapeutic applications of microbial surface-active compounds. AIMS Bioengineering, 2015; 2(3): 144−162. https://doi.org/10.3934/bioeng.2015.3.144
  20. Robbel L., Marahiel M.A. Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J. Biol. Chem. 2010; 285(36): 27501−27508. https://doi.org/10.1074/jbc.R110.128181
  21. Berezhanskiy B.V. Catheter-associated infections in patients on hemodialysis. Clinical Microbiol. Antimicrob.Chemother. 2012; 14(2): 107−117.
  22. Seifert H., Jansen B., Widmer A.F., Farr B.M. Central venous catheters. In: Catheter-related infections (Ed. Seifert H., Jansen B., Farr B.M.). NewYork: MarcelDekker; 2004. p. 293−315.
  23. James M.T., Conley J., Tonelli M., Manns B.J., MacRae J., Hemmelgarn B.R. Metaanalysis: antibiotics for prophylaxis against hemodialysis catheter-related infections. Ann. Intern. Med. 2008; 148(8): 596−605. https://doi.org/10.7326/0003-4819-148-8-200804150-00004
  24. Chow K.M., Poon Y.L., Lam M.P., Poon K.L., Szeto C.C., Li P.K. Antibiotic lock solutions for the prevention of catheter-related bacteraemia in haemodialysis patients. Hong Kong Med. J. 2010; 16(4): 269−274.
  25. Moore C.L., Besarab A., Ajluni M., Soi V., Peterson E.L., Johnson L.E., Zervos M.J., Adams E., Yee J. Comparative effectiveness of two catheter locking solutions to reduce catheter-related bloodstream infection in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2014; 9(7): 1232−1239. https://doi.org/10.2215/CJN.11291113
  26. Chatzinikolaou I., Zipf T.F., Hanna H., Umphrey J., Roberts W.M., Sherertz R., Hachem R., Raad I. Minocycline-ethylenediaminetetraacetate lock solution for the prevention of implantable port infections in children with cancer. Clin. Infect. Dis. 2003; 36(1): 116−119. https://doi.org/10.1086/344952
  27. Pirog T.P., Savenko I.V., Lutsay D. A. Microbial surface-active  substances as antiadhesive agents. Biotechnologia acta. 2016; 9(3): 7−22. 
  28. Parra D., Peña-Monje A., Coronado-Álvarez N.M., Hernández-Quero J., Parra-Ruiz J. In vitro effcacy of daptomycin and teicoplanin combined with ethanol, clarithromycin or gentamicinas catheter lock solutions. BMC Microbiol. 2015. https://doi.org/10.1186/s12866-015-0585-3