Mikrobiol. Z. 2017; 79(3):98-105.
doi: https://doi.org/10.15407/microbiolj79.03.098

Characteristics of Abortive Infection in Lysogenic System of Erwinia horticola

Zlatohurska M.A.1, Khlibiichuk Y.Y.2, Muchnyk F.V.3, Romanyuk L.V.3, Tovkach F.I.3

1Mechnykov Odesa National University
2 Dvoranska Str., Odesa, 65082, Ukraine

2Taras Shevchenko National University of Kyiv
64/13 Volodymyrska Str., Kyiv, 01601, Ukraine

3Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

The study provides evidence of the phage 49 abortive infection in the lysogenic culture of Erwinia horticola 450(59). Aim. To study the peculiarities of abortive infection in lysogenic system of E. horticola under the propagation of phage 49. Methods. Erwiniophage 49 was obtained by propagation on E. horticola 450(59). The phage lysates were studied by using centrifugation in CsCl-gradients, electron microscopy and SDS-PAGE of the virion polypeptides. Results. The Abi-phenotype is manifested through the reduced effciency of virus plating and the decrease of amount of phage progeny. The phage lysates contain an excess of capsid structures, incomplete virions and polytails. The polypeptide profle of these capsid structures corresponds with the one of the native phage particles. Conclusions. The obtained data suggest that the current phage-bacterial system develops the Abi-phenotype affecting the phage morphogenesis.

Key words: abortive infection, bacteriophage 49, Erwinia horticola, capsid, polytails, Abi-phenotype.

Full text (PDF, in English)

  1. Chopin MC, Chopin A, Bidnenko E. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol. 2005; 8:473–9. https://doi.org/10.1016/j.mib.2005.06.006
  2. Clokie MRJ, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage. 2011; 1(1):31-45. https://doi.org/10.4161/bact.1.1.14942
  3. Faidiuk IV, Tovkach FI. Exclusion of polyvalent T7-like phages by prophage elements. Microbiol Z. 2014; 76(5):42-50.
  4. Finerana PC, Blowera TR, Fouldsa IJ, Humphreys DP, Lilley KS, Salmond GP. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci USA. 2009; 106(3): 894-9. https://doi.org/10.1073/pnas.0808832106
  5. Howard-Varona C, Roux S, Dore H, Solonenko NE, Holmfeldt K, Markillie LM, Orr G, Sullivan MB. Regulation of infection effciency in a globally abundant marine Bacteriodetes virus. ISME J. 2017; 11: 284–95. https://doi.org/10.1038/ismej.2016.81
  6. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010; 8(5):317-27. https://doi.org/10.1038/nrmicro2315
  7. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227:680–5. https://doi.org/10.1038/227680a0
  8. Rebrova O. Statistical analysis of medical data aplication of software package STATISTICA. Moscow. MediSphere. 2002.
  9. Romanyuk LV, Tovkach FI, Ivanitsa TV, Kushkina AI, Ostapchuk AN, Gorb TE. [Abortive infection in Erwinia carotovora, as a source of nanoparticles of phage nature]. Microbiol Z. 2010; 72(6):51-7. Rassian.
  10. Stern A, Sorek R. The phage-host arms-race: shaping the evolution of microbes. Bioessays. 2011; 33(1):43–51. https://doi.org/10.1002/bies.201000071
  11. Tovkach FI, Shevchenko TV, Gorb TE, Mukvich NS, Romanyuk LV. [Comparative study of properties of temperate erwiniophages 49 and 59]. Microbiol Z. 2002; 64(2):65-81. Russian.
  12. Weinbauer MG. Ecology of prokaryotic viruses. FEMS Micrbiol Rev.2004; 28:127-81. https://doi.org/10.1016/j.femsre.2003.08.001
  13. Zlatohurska MA, Tovkach FI. Morphological heterogeneity of temperate erwiniophage 59. Microbiol Z. 2016; 78(1):71-83.