Mikrobiol. Z. 2016; 78(4):109-124. Ukrainian.
doi: https://doi.org/10.15407/microbiolj78.04.109

Surface Plasmon Resonance: Approaches and Perspectives of Application
for Virus-Specific Interactions Investigations

Boltovets P.M.2, Nesterova N.V.1

1Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

2Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine
41 Nauky Av., Kyiv, 03127, Ukraine

In the review the published data on the use of surface plasmon resonance methods for the study of individual viral proteins as well as intact viruses are reviewed. The principles of the method, its benefits and peculiarities of its use to study viruses are introduced. Particular attention is paid to the requirements to the sensor surface and the methods of its modification, including the formation self assembled monolayers of amphiphilic organic molecules containing functional groups to connect to the surface, creating of the intermediate protective thiocyanate layer between protein and metal, forming of the favorable microenvironment using dextran hydrogels around biomolecules, immobilization of proteins on the surface of the sensor using streptavidin-biotin system, use of protein A Staphylococcus aureus as an sensitive element of the sensory system structure. The approaches to enhance the signal used in virological studies, including the use of labeled antibodies, using competitive analysis for the detection of small molecules, the formation of a complex directly on the sensor surface, and immobilization on the surface of the sensor previously obtained complex receptor–analyte are considered. The conclusion is that the SPR method contains many potential opportunities to study various aspects of the interaction of viruses with specific agents, and changes in the structure of viruses caused by various external factors.

Key words: surface plasmon resonance, viruses, viral proteins.

Full text (PDF, in Ukrainian)

  1. Boltovets P.N., Snopok B.A., Shevchenko T.P., Dyachenko N.S., Shirshov Yu.M. Optoelektronnye preobrazovateli dlya detektsii biologicheski opasnykh agentov. Peterburgskiy zhurnal elektroniki. 2004; 1:51–58.
  2. Boltovets P.M., Boyko V.R., Ive M., Snopok B.A., Shyrshov Yu.M., Dyachenko N.S. Doslidzhennya vzayemodii mizh imunohlobulinamy ta vyyavlennya virusnykh antyheniv u klitynnykh homohenatakh metodom poverkhnevoho plazmonnoho rezonansu. Mikrobiol. Z. 2003; 65(4):51–61.
  3. Boltovets P.M., Boyko V.R., Snopok B.A. Detektsiya virusnykh antyheniv u roslynnomu materiali z symptomamy virusnoho urazhennya. Visnyk Kyivskoho Universytetu. 2011; 57:28–30.
  4. Boltovets P.M., Dyachenko N.S., Didenko L.F., Parkhomenko N.Y., Maksymenko L.O., Mandrika T.Yu., Snopok B.A., Shyrshov Yu.M. Imunospetsyfichne vyznachennya X-virusu kartopli z vykorystannyam poverkhnevoho plazmonnoho rezonansu. Mikrobiol. Z. 2005; 67(5):58–63.
  5. Boltovets P.M., Nesterova N.V. Zastosuvannya metodu poverkhnevoho plazmonnoho rezonansu u virusolohichnykh doslidzhennyakh. Mikrobiol. Z. 2006; 68(3):86–98.
  6. Nosach L.M., Boltovets P.M., Zahorodnya S.D., Povnytsya O.Yu., Holovan A.V., Netreba N.I., Dobrochynska L.I. Vyyavlennya antyadenovirusnykh antytil metodom poverkhnevoho plazmonnoho rezonansu Ukrainskyi biokhimichnyi zhurnal. 2009; 4:39–47.
  7. Nosach L.M., Boltovets P.M., Povnytsya O.Yu., Zhovnovata V.L., Zakharenko O.M., Snopok B.A., Shyrshov Yu.M., Dyachenko N.S. Doslidzhennya vzayemodii antyhen–antytilo adenovirusu lyudyny metodom poverkhnevoho plazmonnoho rezonansu. Mikrobiol. Z. 2005; 67(4):58–64.
  8. Pyrohova L.V., Starodub M.F. Immobilizatsiya antyhenu retrovirusu leykozu velykoi rohatoi khudoby na poverkhni imunnoho biosensora. Biotekhnolohiya. 2008; 1(2):52–58.
  9. Abad L.W., Neumann M., Tobias L., Obenauer-Kutner L., Jacobs S., Cullen C. Development of a biosensor-based method for detection and isotyping of antibody responses to adenoviral-based gene therapy vectors. Analytical Biochemistry. 2002; 310(1):107–113. https://doi.org/10.1016/S0003-2697(02)00314-7
  10. Alam S.M., Paleos C.A., Liao H.X., Scearce R., Robinson J., Haynes B.F. An Inducible HIV Type 1 gp41 HR-2 Peptide-Binding Site on HIV Type 1 Envelope gp120. AIDS Res. Hum. Retrovir. 2004; 20(8):836–845. https://doi.org/10.1089/0889222041725181
  11. Alterman M., Sjöbom H., Säfsten P., Markgren P.-O., Danielson U.H., Hämäläinen M., Löfås S., Hultén J., Classon B., Samuelsson B., Hallberg A. P1/P1′ modified HIV protease inhibitors as tools in two new sensitive surface plasmon resonance biosensor screening assays. European Journal of Pharmaceutical Sciences. 2001; 13(2):203–212. https://doi.org/10.1016/S0928-0987(01)00109-9
  12. Bai H., Wang R., Hargis B., Lu H., Li Y. A SPR aptasensor for detection of avian influenza virus H5N1. Sensors. 2012; 12(9):12506–12518. https://doi.org/10.3390/s120912506
  13. Bain C.D., Troughton E.B., Tao Y.-T., Evall J., Whitesides G.M., Nuzzo R. Formation of monolayer films by the spomtaneous assembly of organic thiols from solution onto gold. J.Am.Chem.Soc. 1989; 111(1):321–335. https://doi.org/10.1021/ja00183a049
  14. Beerheide W., Sim M.M., Tan Y.J., Bernard H.U., Ting A.E. Inactivation of the human papillomavirus-16 E6 oncoprotein by organic disulfides. Bioorg. Med. Chem. 2000; 8(11):2549–2560. https://doi.org/10.1016/S0968-0896(00)00193-0
  15. Boltovets P.M., Boyko V.R., Kostikov I.Yu., Dyachenko N.S., Snopok B.A., Shirshov Y.M. Simple method for plant virus detection: Effect of antibody immobilization technique. J. Virol. Meth. 2002; 105(1):141–146. https://doi.org/10.1016/S0166-0934(02)00098-8
  16. Boltovets P.M., Boyko V.R., Snopok B.A. Surface capturing of virion-antibody complexes: kinetic study. Materialwissenschaft und Werkstofftechnik. 2013; 44(1–2):112–118. https://doi.org/10.1002/mawe.201300106
  17. Boltovets P.M., Polischuk O.M., Kovalenko O.G., Snopok B.A. A simple SPR-based method for the quantification of the effect of potential virus inhibitors. Analyst. 2013; 138(2):480–486. https://doi.org/10.1039/C2AN35972C
  18. Boltovets P.M., Snopok B.A., Boyko V.R., Shevchenko T.P., Dyachenko N.S., Shirshov Y.M. Detection of plant viruses using a surface plasmon resonance via complexing with specific antibodies. J. Virol. Meth. 2004; 121(1):101–106. https://doi.org/10.1016/j.jviromet.2004.06.019
  19. Casanovas J.M., Bickford J.K., Springer T.A. The domain structure of ICAM–1 and the kinetics of binding to rhinovirus. J. Virol. 1998; 72(7):6244–62446.
  20. Chang C.-C., Chuang T.-L., Wang D.-S., Wang C.-H., Lin C.-W. Comparative Assessment of Oriented Antibody Immobilization on Surface Plasmon Resonance Biosensing. J. Chin. Chem. Soc. 2013; 60(12):1449–145. https://doi.org/10.1002/jccs.201300116
  21. Critchley P., Dimmock N.J. Binding of an influenza A virus to a neomembrane measured by surface plasmon resonance. Bioorg. Med. Chem. 2004; 12(10):2773–2780. https://doi.org/10.1016/j.bmc.2004.02.042
  22. Critchley P., Kazlauskaite J., Eason R., Pinheiro T.J. Binding of prion proteins to lipid membranes. Biochem. Biophys. Res. Commun. 2004; 313(3):59–567. https://doi.org/10.1016/j.bbrc.2003.12.004
  23. Fu J., Li L., Bouvier M. Adenovirus E3-19K proteins of different serotypes and subgroups have similar, yet distinct, immunomodulatory functions toward major histocompatibility class I molecules. J. Biol. Chem. 2011; 286(20):17631–17639. https://doi.org/10.1074/jbc.M110.212050
  24. Garcia B.H., Goodman R.M. Use of surface plasmon resonance imaging to study viral RNA: protein interactions. J. Virol. Methods. 2008; 147(1):18–25. https://doi.org/10.1016/j.jviromet.2007.08.002
  25. Gruen L.C., McKimm-Breschkin J.L., Coldwell J.B., Nice E.C. Affinity ranking of influenza neuraminidase mutants with monoclonal antibodies using an optical biosensor. Comparison with ELISA and slot blot assay. Journal of Immunol. Meth. 1994; 168(1):91–100. https://doi.org/10.1016/0022-1759(94)90213-5
  26. Gutiérrez-Aguirre I., Hodnik V., Glais L., Rupar M., Jacquot E., Anderluh G., Ravnika M. Surface plasmon resonance for monitoring the interaction of Potato virus Y with monoclonal antibodies. Anal. Biochem. 2014; 447:74–81. https://doi.org/10.1016/j.ab.2013.10.032
  27. Haro I., Perez S., Garcia M., Chan W.C., Ercilla G. Liposome entrapment and immunogenic studies of a synthetic lipophilic multiple antigenic peptide bearing VP1 and VP3 domains of the hepatitis A virus: a robust method for vaccine design. FEBS Lett. 2003; 540(1–3):133–140. https://doi.org/10.1016/S0014-5793(03)00249-7
  28. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008; 108(2):462–493. https://doi.org/10.1021/cr068107d
  29. Huang C.Y., Hsu Y.L., Chiang W.L., Hou M.H. Elucidation of the stability and functional regions of the human coronavirus OC43 nucleocapsid protein. Protein Sci. 2009; 18(11):2209–2218. https://doi.org/10.1002/pro.225
  30. Keusgen M. Biosensors: new approaches in drug discovery. Naturwissenschatten. 2002; 89(10):433–444. https://doi.org/10.1007/s00114-002-0358-3
  31. Kobayashi N., Oyama H. Antibody engineering toward high-sensitivity high-throughput immunosensing of small molecules. Analyst. 2011; 136(4):642–51. https://doi.org/10.1039/C0AN00603C
  32. Kolotilov S.V., Boltovets P.N., Snopok B.A., Pavlishchuk V.V. Nanosized magnetic composite for extraction of gamma-immunoglobulins from biological media. Theoretical and Experimental Chemistry. 2006; 42(4):211–216. https://doi.org/10.1007/s11237-006-0041-4
  33. Meng X., Leman M., Xiang Y. Variola virus IL-18 binding protein interacts with three human IL-18 residues that are part of a binding site for human IL-18 receptor alpha subunit. Virology. 2007; 358(1):211–220. https://doi.org/10.1016/j.virol.2006.08.019
  34. Nesterova N.V., Nosach L.M., Zagorodnya S.D., Povnitsa O.Y., Boltovets P.M., Baranova G.V., Golovan A.V. Elaboration of optical immunosensors based on the surface plasmon resonance for detecting specific antibodies and antigens of Epstein-Barr virus and human adenovirus. Mikrobiol Z. 2008; 70(6):67–73.
  35. Peter J.C., Briand J.P., Hoebeke J. How biotinylation can interfere with recognition: a surface plasmon resonance study of peptide-antibody interactions. J Immunol Methods. 2003; 274(1–2):149–158. https://doi.org/10.1016/S0022-1759(02)00517-3
  36. Pustylnikov S., Dave R.S., Khan Z.K., Porkolab V., Rashad A.A., Hutchinson M., Fieschi F., Chaiken I., Jain P. Inhibition of DC-SIGN-Mediated HIV-1 Infection by Complementary Actions of Dendritic Cell Receptor Antagonists and Env-Targeting Virus Inactivators. AIDS Res Hum Retroviruses. 2016; 32(1):93–100. https://doi.org/10.1089/aid.2015.0184
  37. Ribaut C., Voisin V., Malachovská V., Dubois V., Mégret P., Wattiez R., Caucheteur C. Small biomolecule immunosensing with plasmonic optical fiber grating sensor. Biosens Bioelectron. 2015; 77:315–322. https://doi.org/10.1016/j.bios.2015.09.019
  38. Riedel T., Rodriguez-Emmenegger C., Santos Pereira A., Bědajánková A., Jinoch P., Boltovets P.M., Brynda E. Diagnosis of Epstein–Barr virus infection in clinical serum samples by an SPR biosensor assay. Biosensors and Bioelectronics. 2014; 55:278–284. https://doi.org/10.1016/j.bios.2013.12.011
  39. Rojo N., Ercilla G., Haro I. GB virus C (GBV-C) / hepatitis G virus (HGV): towards the design of synthetic peptides-based biosensors for immunodiagnosis of GBV-C/HGV infection. Curr. Protein Pept. Sci. 2003; 4(4):291–298. https://doi.org/10.2174/1389203033487135
  40. Rosenberg M.R., Casarotto M.G. Coexistence of two adamantane binding sites in the influenza A M2 ion channel. PNAS. 2010; 107(31):13866–13871. https://doi.org/10.1073/pnas.1002051107
  41. Schneider C.S., Bhargav A.G., Perez J.G., Wadajkar A.S., Winkles J.A., Woodworth G.F., Kim A.J. Surface plasmon resonance as a high throughput method to evaluate specific and non-specific binding of nanotherapeutics. J Control Release. 2015; 219:331–44. https://doi.org/10.1016/j.jconrel.2015.09.048
  42. Sheffield K.S., Kennedy A.E., Scott J.A., Ross G.M. Characterizing nerve growth factorp75NTR interactions and small molecule inhibition using surface plasmon resonance spectroscopy. Anal Biochem. 2015; pii: S0003–2697(15)00461–3 [Epub ahead of print]
  43. Sjölander S., Urbaniczky C. Integrated fluid handling system for biomolecular interaction analysis. Anal.Chem. 1991; 63(20):2338–2345. https://doi.org/10.1021/ac00020a025
  44. Smith S.A., Sreenivasan R., Krishnasamy G., Judge K.W., Murthy K.H., Arjunwadkar S.J., Pugh D.R., Kotwal G.J. Mapping of regions within the vaccinia virus complement control protein involved in dose-dependent binding to key complement components and heparin using surface plasmon resonance. Biochim. Biophys. Acta. 2003; 1650(1–2):30–39. https://doi.org/10.1016/S1570-9639(03)00189-4
  45. Urban S., Schwarz C., Marx U.C., Zentgraf H., Schaller H., Multhaup G. Receptor recognition by a hepatitis B virusreveals a novel mode of high affinity virus-receptor interaction. EMBO J. 2000; 19(6):1217–1227. https://doi.org/10.1093/emboj/19.6.1217
  46. Vaisocherová H., Mrkvová K., Piliarik M., Jinoch P., Steinbachová M., Homola J. Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus. Biosens Bioelectron. 2007; 22(6):1020–1026. https://doi.org/10.1016/j.bios.2006.04.021
  47. Van Cott T.C., Bethke F.R., Kalyanaraman V., Burke D.S., Redfield R.R., Birx D.L. Preferal antibody recognition of structurally distinct HIV-1 gp120 molecules. J. Acquired Immune Deficiency Syndromes. 1994; 7:1103–1115.
  48. Varga N., Sutkeviciute I., Ribeiro-Viana R., Berzi A., Ramdasi R., Daghetti A., Vettoretti G., Amara A., Clerici M., Rojo J., Fieschi F., Bernardi A. A multivalent inhibitor of the DC-SIGN dependent uptake of HIV-1 and Dengue virus. Biomaterials. 2014; 35(13):4175–4184. https://doi.org/10.1016/j.biomaterials.2014.01.014
  49. Verma S., Dimitrova M., Munjal A., Fontana J., Crevar C.J., Carter D.M., Ross T.M., Khurana S., Golding H. Oligomeric recombinant H5 HA1 vaccine produced in bacteria protects ferrets from homologous and heterologous wild-type H5N1 influenza challenge and controls viral loads better than subunit H5N1 vaccine by eliciting highaffinity antibodies. J Virol. 2012; 86(22):12283–12293. https://doi.org/10.1128/JVI.01596-12
  50. Wang W., Fang Q., Hu Z. High-Throughput Peptide Screening on a Bimodal Imprinting Chip Through MS-SPRi Integration. Methods Mol. Biol. 2016; 1352:111–25. https://doi.org/10.1007/978-1-4939-3037-1_9