Mikrobiol. Z. 2016; 78(4):48-58. Russian.
doi: https://doi.org/10.15407/microbiolj78.04.048

Effect of Zn2+on Synthesis of Acinetobacter calcoaceticus IMV B-7241 Surfactants
with Antimicrobial and Antiadhesive Properties

Pirog T.P.1,2, Savenko I.V.1, Shevchuk T.A.2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim. To study the effect of zinc cations in the composition of ethanol and n-hexadecane containing medium on the antiadhesive and antimicrobial activity of Acinetobacter calcoaceticus ІMV B-7241 surfactants. Methods. Surfactants were extracted from supernatant of cultural liquid by mixture of chloroform and methanol (2 : 1). The number of attached cells was determined spectrophotometrically, antimicrobial properties – by index of the minimum inhibitory concentration (MIC). Results. Adding Zn2+ (38 mmol/l) into medium with ethanol and n-hexadecane containing copper sulphate and iron sulphate, was accompanied by the formation of surfactant with higher antimicrobial and antiadhesive activity, as well as increasing activity of NADP+-dependent glutamate dehydrogenase − a key enzyme of aminolipids biosynthesis. The minimum inhibitory concentration against Escherichia coli ІЕМ-1, Enterobacter cloaceae C-8, Staphylococcus aureus БМС-1 and Proteus vulgaris ПА-12 of surfactants, synthesized in the presence of Zn2+, and the adhesion of E. coli ІЕМ-1 on abiotic surfaces treated with such surfactants, were respectively in 1.6 - 3.3 times and 10 - 19 % lower than those of the preparations obtained under cultivation of ІMV B-7241 strain in medium without zinc cations. The activity of NADP+-dependent glutamate dehydrogenase at the end of exponential phase of A. calcoaceticus ІMV B-7241 growth in medium with ethanol (n-hexadecane), copper, zinc and iron sulfate, was 1739 ± 87 (8333 ± 416) nmol·min-1·mg-1 protein that in 2 and 15 times higher than under the same conditions cultivation on ethanol and n-hexadecane without Zn2+. Conclusions. The obtained data suggest the possibility of biosynthesis regulation of A. calcoaceticus ІMV B-7241 surfactants with antimicrobial and antiadhesive properties, when zinc cations (activator NADP+-dependent glutamate dehydrogenase − a key enzyme of aminolipids synthesis) were added into medium with ethanol (n-hexadecane), as well as the possibility of regulating the biological properties of the surfactants during cultivation of producer.

Key words: Acinetobacter calcoaceticus ІМВ В-7241, surfactants, zinc cations, activity of glutamate dehydrogenase, antimicrobial and antiadhesive activity.

Full text (PDF, in Russian)

  1. Pirog T.P., Savenko I.V., Shevchuk T.A. Effect of cultivation condition of Acinetobacter calcoaceticus IMV B-7241 on antiadhesive properties of surfactants. Microbiol. Z. 2016; 79(1): 2−12.
  2. Pirog T.P., Savenko I.V., Shevchuk T.A., Krutous N.V., Iutynska G.O. Antimicrobial properties surfactants synthesized under different cultivation conditions of Acinetobacter calcoaceticus IMV B-7241. Microbiol. Z. 2016; 79(3): 2−12. https://doi.org/10.15407/microbiolj78.03.002
  3. Pirog T.P., Shevchuk T.A., Mashchenko O.Yu., Parfenyuk S.A., Iutinskaya G.A. Effect of growth factors and some microelements on biosurfactant synthesis of Acinetobacter calcoaceticus IMV B-7241. Microbiol. Z. 2013; 75(5): 19−27.
  4. Cortes-Sanchez A., Hernandez-Sanchez H., Jaramillo-Flores M. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol. Rec. 2013; 168(1): 22–32. https://doi.org/10.1016/j.micres.2012.07.002
  5. Meena K.R., Kanwar S.S. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed. Res. Int. 2015. https://doi.org/10.1155/2015/473050
  6. Pirog T.P., Konon A.D., Beregovaya K.A., Shulyakova M.A. Antiadhesive properties of the surfactants of Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017, and Nocardia vaccinii IMB B-7405. Microbiology. 2014; 83(6): 732–739. https://doi.org/10.1134/S0026261714060150
  7. Pirog T.P., Beregova K.A., Savenko I.V., Shevchuk T.A., Iutynska G.O. Antimicrobial action of Nocardia vaccinii IMV B-7405 surfactants. Microbiol. Zh. 2015; 78(6): 2−10.
  8. Hudson R.C., Ruttersmith L.D., Daniel R.M. Glutamate dehydrogenase from the extremely thermophilic archaebacterial isolate AN1. Biochim. Biophys. Acta. 1993; 1202(2): 244–250. https://doi.org/10.1016/0167-4838(93)90011-F
  9. Lee M.K., González J.M., Robb F.T. Extremely thermostable glutamate dehydrogenase (GDH) from the freshwater archaeon Thermococcus waiotapuensis: cloning and comparison with two marine hyperthermophilic GDHs. Extremophiles. 2002; 6(2): 151–159. https://doi.org/10.1007/s007920100238
  10. Bhuiya M.W., Sakuraba H., Kujo C., Nunoura-Kominato N., Kawarabayasi Y., Kikuchi H., Ohshima T. Glutamate dehydrogenase from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1: enzymatic characterization, identification of the encoding gene, and phylogenetic implications. Extremophiles. 2000; 4(6): 333–341. https://doi.org/10.1007/s007920070002
  11. Sarada K.V., Rao N.A., Venkitasubramanian T.A. Isolation and characterisation of glutamate dehydrogenase from Mycobacterium smegmatis CDC 46. Biochim. Biophys. Acta. 1980; 615(2): 299–308. https://doi.org/10.1016/0005-2744(80)90498-2
  12. Lin H.P.P., Reeves H.C. Purification and characterization of NADP+ -specific glutamate dehydrogenase from Escherichia coli. Curr. Microbiol. 1991; 22(6): 371–376. https://doi.org/10.1007/BF02092157
  13. Choudhury R., Punekar N.S. Aspergillus terreus NADP-glutamate dehydrogenase is kinetically distinct from the allosteric enzyme of other Aspergilli. Mycol. Res. 2009; 113(10): 1121–1126. https://doi.org/10.1016/j.mycres.2009.07.009
  14. Singh A.K., Rautela R., Cameotra S.S. Substrate dependent in vitro antifungal activity of Bacillus sp. strain AR2. Microb. Cell. Fact. 2014. https://doi.org/10.1186/1475-2859-13-67
  15. Zhihui X., Jiahui S., Bing L., Xin Y., Qirong S. and Ruifu Z. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl. Environ. Microbiol. 2013; 79(3): 808–815. https://doi.org/10.1128/AEM.02645-12
  16. Mandal S.M., Barbosa A.E., Franco O.L. Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol. Adv. 2013; 31(2): 338–345. https://doi.org/10.1016/j.biotechadv.2013.01.004
  17. Pirog T.P., Shevchuk T.A., Antonyuk S.I., Kravchenko Ye.Yu., Iutiynska G.O. Effect of univalent cations on synthesis of surfactants by Acinetobacter calcoaceticus IMV B-7241. Microbiol. Zh. 2013; 75(2): 10−20.
  18. Pirog T.P., Shevchuk T.A, Klimenko Yu. A. Intensification of surfactant synthesis in Rhodococcus erythropolis EK-1 cultivated on hexadecane. Appl. Biochem. Microbiol. 2010; 46(6): 599−606. https://doi.org/10.1134/S0003683810060074
  19. Huang X., Liu J., Wang Y., Liu J., Lu L. The positive effects of Mn2+ on nitrogen use and surfactin production by Bacillus subtilis ATCC 21332. Biotechnol. Biotechnol. Equip. 2015; 29(2): 381−389. https://doi.org/10.1080/13102818.2015.1006905
  20. Ławniczak Ł., Marecik R., Chrzanowski Ł. Contributions of biosurfactants to natural or induced bioremediation. Appl. Microbiol. Biotechnol. 2013; 97(6): 2327–2339. https://doi.org/10.1007/s00253-013-4740-1