Mikrobiol. Z. 2015; 77(5):2-10. Ukrainian.
doi: https://doi.org/10.15407/microbiolj77.06.002

Antimicrobial Action of Nocardia vaccinii IMV B-7405 Surfactants

Pirog T.P.1,2, Beregova K.A.1, Savenko I.V.1, Shevchuk T.A.2, Iutynska G.O.2

1National University of Food Technologies
68 Volodymyrska Str., Kyiv, 01601, Ukraine

2Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Aim. To study the effect of Nocardia vaccinii IMV B-7405 surfactants on some bacteria (including pathogens of genera Proteus, Staphylococcus, Enterobacter), yeast of Candida species and fungi (Aspergillus niger R-3, Fusarium culmorum T-7). Methods. The antimicrobial properties of surfactant were determined in suspension culture by Koch method and also by index of the minimum inhibitory concentration. Surfactants were extracted from supernatant of cultural liquid by mixture of chloroform and methanol (2 : 1). Results. It is shown that the antimicrobial properties of N. vaccinii IMV B-7405 surfactant depended on the degree of purification (supernatant, solution of surfactant), concentration and exposure. Survival of Escherichia coli IEM-1 and Bacillus subtilis BT-2 (both vegetative cells and spores) after treatment for 1 - 2 hours with surfactants solution and the supernatant (the surfactant concentration 21 μg/ml) was 3 - 28 %. Minimum inhibitory concentrations of N. vaccinii IMV B-7405 surfactants on studied bacteria, yeast and micromycetes were 11.5 - 85.0; 11.5 - 22.5 and 165.0 - 325.0 μg/ml respectively. Conclusions. Minimum inhibitory concentrations of N. vaccinii IMV B-7405 surfactants are comparable to those of the known microbial surfactants. The possibility of using the supernatant of culture liquid as an effective antimicrobial agent noticeably simplifies and reduces the cost of the technology of its obtaining.

Key words: surfactants, Nocardia vaccinii IMV В-7405, antimicrobial properties, minimum inhibitory concentration.

Full text (PDF, in Ukrainian)

  1. Lakin G.F. Biometriya. Moscow: Vysshaya shkola. 1990.
  2. Pirog T.P., Konon A.D., Sofilkanich A.P., Iutinskaya G.A. Deystvie poverkhnostno-aktivnykh veshchestv Acinetobacter calcoaceticus IMV V-7241, Rhodococcus erythropolis IMV Ac-5017 i Nocardia vaccinii IMV V-7405 na fitopatogennye bakterii. Prikl. biokhimiya i mikrobiologiya. 2013; 49(4):364-371.
  3. Pirog T.P., Konon A.D., Beregovaya K.A., Shulyakova M.A. Antiadgezivnye svoystva poverkhnostno-aktivnykh veshchestv Acinetobacter calcoaceticus IMV V-7241, Rhodococcus erythropolis IMV Ac-5017 i Nocardia vaccinii IMV V-7405. Mikrobiologiya. 2014; 86(6):631-639.
  4. Albericio F., Kruger H.G. Foreword special focus: therapeutic peptides. Future Med. Chem. 2012; 4(12):1527-1531. https://doi.org/10.4155/fmc.12.94
  5. Bayani M., Siadati S., Rajabnia R., Taher A.A. Drug resistance of Pseudomonas aeruginosa and Enterobacter cloacae isolated from ICU, Babol, Northern Iran. Int. J. Mol. Cell. Med. 2013; 2(4):204-209.
  6. Cawoy H., Debois D., Franzil L., De Pauw E., Thonart P., Ongena M. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb. Biotechnol. 2015; 8(2):281-295. https://doi.org/10.1111/1751-7915.12238
  7. Cortes-Sanchez A., Hernandez-Sanchez H., Jaramillo-Flores M. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol. Rec. 2013; 168(1):22-32. https://doi.org/10.1016/j.micres.2012.07.002
  8. Dubey D., Rath S., Sahu M., Rout S., Debata N. A report on infection dynamics of inducible clindamycin resistance of Staphylococcus aureus isolated from a teaching hospital in India. Asian. Pac. J. Trop. Biomed. 2013; 3(2):148-153. https://doi.org/10.1016/S2221-1691(13)60040-4
  9. Frieden T. Running out of drugs to treat serious gram-negative infections. Report. C.: CDCP, 2013.
  10. Kostakioti M., Hadjifrangiskou M., Hultgren S.J. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold. Spring. Harb. Perspect. Med. 2013; 3(4):111-124. https://doi.org/10.1101/cshperspect.a010306
  11. Lotfabad B., Shahcheraghi F., Shooraj F Assessment of antibacterial capability of ramnolipids produced by two indigenous Pseudomonas aeruginosa strains. Jundishapur. J. Microbiol. 2013; 6(1):29-35. https://doi.org/10.5812/jjm.2662
  12. Mazzola P., Jozala A., Lencastre-Novaes L., Moriel P., Vessoni-Penna T. Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. Braz. J. Pharm. Sci. 2009; 45(2):241-248. https://doi.org/10.1590/S1984-82502009000200008
  13. Monnappa A.K., Dwidar M., Seo J.K., Hur J.H., Mitchell R.J. Bdellovibrio bacteriovorus inhibits Staphylococcus aureus biofilm formation and invasion into human epithelial cells. Sci. Rep. 2014.
  14. Pfaller M., Diekema D. Progress in antifungal susceptibility testing of Candida sp. by use of clinical and laboratory standards institute broth microdilution methods, 2010 to 2012. J. Clin. Microbiol. 2012; 50(9):2846-2856. https://doi.org/10.1128/JCM.00937-12
  15. Pirog T., Sofilkanych A., Konon A., Shevchuk T., Ivanov S. Intensification of surfactants' synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii K-8 on fried oil and glycerol containing medium. Food Bioprod. Proces. 2013; 91(2):149-157. https://doi.org/10.1016/j.fbp.2013.01.001
  16. Pirog T., Shulyakova M., Sofilkanych A., Shevchuk T., Maschenko O. Biosurfactant synthesis by Rhodococcus erytropolis IMV Ac -5017, Acinetibacter calcoaceticus IMV B-7241, Nocardia vaccinii IMV B-7405 on byproduct of biodiesel product. Food Bioprod. Proces. 2015; 93(1):11-18. https://doi.org/10.1016/j.fbp.2013.09.003
  17. Raaijmakers J.M., De Bruijn I., Nybroe O., Ongena M. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 2010; 34(6):1037-1062. https://doi.org/10.1111/j.1574-6976.2010.00221.x
  18. Schwameisa R., Erdogan-Yildirima Z., Manafib M., Zeitlingera M., Strommera S., Sauermanna R. Effect of pulmonary surfactant on antimicrobial activity in vitro. Antimicrob. Agents. Chemother. 2013; 57(10):5151-5154. https://doi.org/10.1128/AAC.00778-13
  19. Sharma D., Mandal S.M., Manhas R.K. Purification and characterization of a novel lipopeptide from Streptomyces amritsarensis sp. nov. active against methicillin-resistant Staphylococcus aureus. AMB Express. 2014; 4:50. https://doi.org/10.1186/s13568-014-0050-y
  20. Tareq F.S., Lee M.A., Lee H.S., Lee J.S., Lee Y.J., Shin H.J. Gageostatins A-C, antimicrobial linear lipopeptides from a marine Bacillus subtilis. Mar. Drugs. 2014; 12(2):871-885. https://doi.org/10.3390/md12020871
  21. Yan P., Liu W., Kong J., Wu H., Chen Y. Prevention of catheter-related Pseudomonas aeruginosa infection by levofloxacin-impregnated catheters in vitro and in vivo. Chin. Med. J. 2014; 127(1):54-58.
  22. 22. Yilmaz F.F., Tasli H., Gul-Yurtsever S., Buyuk A., Hosgor-Limoncu M. Tigecycline susceptibility in multidrug resistant Acinetobacter Isolates from Turkey. Pol. J. Microbiol. 2013; 62(3):295-298.