Mikrobiol. Z. 2015; 77(1):33-38.
doi: https://doi.org/10.15407/microbiolj77.01.033

Complete Sequence of Landomycin E Biosynthetic Gene Cluster from Streptomyces globisporus 1912

Matselyukh B.P., Polishchuk L.V., Lukyanchuk V.V.

Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154 Akad. Zabolotny Str., Kyiv, 03143, Ukraine

Streptomyces globisporus 1912 and their derivatives 1912-4Crt and 1912-2 are the producers of the landomycin E, carotenoids and regulatory diketopiperazine, respectively. The genome DNA of two mutant strains, 1912-2, the more effective producer of the landomycin E and regulator, and 1912-4Crt, the producer of beta-carotene and lycopene, was sequenced by Illumina. Comparative analysis of the DNA sequences of two neighboring contigs of 1912-2 and one contig of 1912-4Crt using GenBank data allowed localization of 36 landomycin E biosynthetic genes lnd of S. globisporus 1912 in one cluster. Twenty of these lnd genes have been sequenced for the fi rst time. The new regulatory responce gene lndRR and the sensor kinase gene lndY1 were proposed as the members of the putative two-component system. A high identity (94 - 95 %) was found for the lnd genes of the 1912 strain and those of the metagenomic clone AZ97, and the lower similarity (80-85%) of lnd and lan genes of S. cyanogenus S136 encoding landomycin A biosynthesis. Two direct repeats of 21 bp were shown in the crtY gene coding lycopene cyclase. A deletion in the lndRR gene renders the 1912-4Crt strain deficient in landomycin E production.

Key words: Streptomyces globisporus, landomycin E, biosynthetic gene cluster, sequences.

Full text (PDF, in English)

  1. Boetzer M., Henkel C., Jansem H., Butler D., Pirovano W. Scaffoldingpreassembled contigs using SSPACE. Bioinformatics. 2011; 27:578-579. https://doi.org/10.1093/bioinformatics/btq683
  2. Boetzer M., Pirovano W. Toward almost closed genomes with GapFiler. Genome Biology. 2013; 13:R56. https://doi.org/10.1186/gb-2012-13-6-r56
  3. Chikhi R., Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2013; 00:1-7.
  4. Das A., Khosla C. Biosynthesis of aromatic polyketides in bacteria. Acc. Chem. Res. 2009; 42:631-639. https://doi.org/10.1021/ar8002249
  5. Fedorenko V., Basiliya L., Pankevych K., Dubitska L., Ostash B., Luzhetskyy A. et al. Genetic control of biosynthesis of antitumor antibiotics - polyketides by actinomycetes. Bull. Inst. Agr. Microbiol. (Ukr.) 2000; 8:27-31.
  6. Feng Z., Kallifi das D., Brady S. Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites. Proc. Natl. Acad. Sci. USA. 2011; 108:12629-12634. https://doi.org/10.1073/pnas.1103921108
  7. Henkel T., Rohr J., Beale J., Schwenen L. Landomycins. New angucycline antibiotics from Streptomyces sp. I. Structural studies on landomycins A-D. J. Antibiot. 1990; 43:492-503. https://doi.org/10.7164/antibiotics.43.492
  8. Hutchinson C., Fujii I. Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Annu. Rev. Microbiol. 1995; 49:201-238. https://doi.org/10.1146/annurev.mi.49.100195.001221
  9. Kieser T., Bibb M., Buttner M., Chater K., Hopwood D. Practical Streptomyces Genetics. Norwich: The John Innes Foundation. 2000.
  10. Korynevska A., Heffeter P., Matseliukh D., Elbling L., Micksche M., Stoika R. et al. Mechanisms underlying the anticancer activities of the angucycline landomycin E. Biochem. Phatmacol. 2007; 74:1713-1726. https://doi.org/10.1016/j.bcp.2007.08.026
  11. Krohn K., Rohr J. Angucyclines: total synthesis, new structures, and biosyntheticstudies of an emerging new class of antibiotics. Nat. Prod. Res. 1997; 188:127-195. https://doi.org/10.1007/BFb0119236
  12. Matselyukh B., Lavrinchuk V. The isolation and characteristics of mutant Streptomyces globisporus 1912 defective for landomycin E biosynthesis. Mikrobiol. Z. 1999; 61:22-27.
  13. Matselyukh B., Matselyukh D., Golembiovska S., Polishchuk L., Lavrinchuk V. Isolation of Streptomyces globisporus and Blakeslea trispora mutants with increased carotenoid content. Mikrobiol. Z. 2013; 75:10-16.
  14. Matselyukh B., Mohammadipanah F., LaatschH., Rohr J., Efremenkova O., Khilya V. N-methylphenylalanyldehydrobutyrine diketopiperazine, an A-factor mimic that restores antibiotic biosynthesis and morphogenesis in Streptomyces globisporus 1912-B2 and Streptomyces griseus 1439. J. Antibiot.
  15. McDaniel R., Ebert-Khosla S., Hopwood D., Khosla C. Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature. 1995; 375:549-554. https://doi.org/10.1038/375549a0
  16. Ostash B., Korynevska A., Stoika R., Fedorenko V. Chemistry and biology of landomycins, an expanding family of polyketide natural products. Mini-Rev. in Med. Chem. 2009; 9:1040-1051. https://doi.org/10.2174/138955709788922593
  17. Ostash B., Rebets Y., Myronovskyy M., Tsypik O., Kulachkovskyy O., Datsyuk Y. et al. Identification and characterization of the Streptomyces globisporus 1912 fegulatory gene lndYR that affects sporulation and antibiotic production. Microbiology. 2011; 157:1240-1249. https://doi.org/10.1099/mic.0.045088-0
  18. Staunton J., Weissman K. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 2001; 18:380-416. https://doi.org/10.1039/a909079g
  19. Westrich L. et al. Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol. Lett. 1999; 170:381-387. https://doi.org/10.1111/j.1574-6968.1999.tb13398.x